Access the full text.
Sign up today, get DeepDyve free for 14 days.
Alfonsas Misevičius, D. Rubliauskas (2008)
ENHANCED IMPROVEMENT OF INDIVIDUALS IN GENETIC ALGORITHMSInformation Technology and Control, 37
E. Burke, Steven Gustafson, G. Kendall (2004)
Diversity in genetic programming: an analysis of measures and correlation with fitnessIEEE Transactions on Evolutionary Computation, 8
H. Ishibuchi, Noritaka Tsukamoto, Y. Nojima (2010)
Diversity Improvement by Non-Geometric Binary Crossover in Evolutionary Multiobjective OptimizationIEEE Transactions on Evolutionary Computation, 14
Q. Pan, P. Suganthan, Ling Wang, Liang Gao, R. Mallipeddi (2011)
A differential evolution algorithm with self-adapting strategy and control parametersComput. Oper. Res., 38
K. Matsui (1999)
New selection method to improve the population diversity in genetic algorithmsIEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028), 1
Xidong Jin, R. Reynolds (1999)
Using knowledge-based evolutionary computation to solve nonlinear constraint optimization problems: a cultural algorithm approachProceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), 3
Helen Cobb, J. Grefenstette (1993)
Genetic Algorithms for Tracking Changing Environments
S. Yuen, C. Chow (2009)
A Genetic Algorithm That Adaptively Mutates and Never RevisitsIEEE Transactions on Evolutionary Computation, 13
P. Darwen, X. Yao (2001)
Why more choices cause less cooperation in iterated prisoner's dilemmaProceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), 2
Ashish Ghosh, S. Tsutsui, H. Tanaka (1996)
Individual aging in genetic algorithms1996 Australian New Zealand Conference on Intelligent Information Systems. Proceedings. ANZIIS 96
J. Grefenstette (1992)
Genetic Algorithms for Changing Environments
M. Lozano, F. Herrera, J. Cano (2008)
Replacement strategies to preserve useful diversity in steady-state genetic algorithmsInf. Sci., 178
Volker Nannen (2006)
A method for parameter calibration and relevance estimation in evolutionary algorithmsProceedings of the 8th annual conference on Genetic and evolutionary computation
Dr. Spears (2000)
Evolutionary Algorithms
J. Kinnear (1994)
Advances in Genetic Programming
L. San-José-Revuelta (2007)
A new adaptive genetic algorithm for fixed channel assignmentInf. Sci., 177
Jingqiao Zhang, A. Sanderson (2009)
JADE: Adaptive Differential Evolution With Optional External ArchiveIEEE Transactions on Evolutionary Computation, 13
James Watson, N. Hopkins, Jeffrey Roberts, J. Steitz, A. Weiner, 松原 謙一, 中村 桂子, 三浦 謹一郎, 今成 啓子, 菊池 京子, 滋賀 陽子, 滝田 郁子, 田口 マミ子 (1970)
遺伝子の分子生物学 = Molecular biology of the gene
N. Mori, J. Yoshida, H. Tamaki, H. Nishikawa (1995)
A thermodynamical selection rule for the genetic algorithmProceedings of 1995 IEEE International Conference on Evolutionary Computation, 1
E. Özcan, B. Bilgin, E. Korkmaz (2008)
A comprehensive analysis of hyper-heuristicsIntell. Data Anal., 12
G. Harik, F. Lobo (1999)
A parameter-less genetic algorithm
Jih-Yiing Lin, Ying-ping Chen (2011)
Analysis on the Collaboration Between Global Search and Local Search in Memetic ComputationIEEE Transactions on Evolutionary Computation, 15
M. Wineberg, F. Oppacher (2003)
Distance between Populations
(1995)
Entropy-driven adaptive representation
Shih-Hsi Liu, M. Mernik, B. Bryant (2007)
A clustering entropy-driven approach for exploring and exploiting noisy functions
Jim Smith, T. Fogarty (1997)
Operator and parameter adaptation in genetic algorithmsSoft Computing, 1
K. Deb, D. Goldberg (1989)
An Investigation of Niche and Species Formation in Genetic Function Optimization
K. Jong, W. Spears (1992)
A formal analysis of the role of multi-point crossover in genetic algorithmsAnnals of Mathematics and Artificial Intelligence, 5
T. Friedrich, N. Hebbinghaus, F. Neumann (2007)
Rigorous analyses of simple diversity mechanisms
Gulshan Singh, K. Deb (2006)
Comparison of multi-modal optimization algorithms based on evolutionary algorithmsProceedings of the 8th annual conference on Genetic and evolutionary computation
E. Zitzler, M. Laumanns, L. Thiele (2002)
SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization
S. Rahnamayan, H. Tizhoosh, M. Salama (2008)
Opposition-Based Differential EvolutionIEEE Transactions on Evolutionary Computation, 12
F. Oppacher, M. Wineberg (1999)
The Shifting Balance Genetic Algorithm: improving the GA in a dynamic environment
E. López, James McDermott, M. O’Neill, A. Brabazon (2010)
Towards an understanding of locality in genetic programming
G. Cox, B. Langford (2006)
~ " " " ' l I ~ " " -" . : -· " J
M. Birattari, T. Stützle, L. Paquete, Klaus Varrentrapp (2002)
A Racing Algorithm for Configuring Metaheuristics
R. Mallipeddi, P. Suganthan, Q. Pan, M. Tasgetiren (2011)
Differential evolution algorithm with ensemble of parameters and mutation strategiesAppl. Soft Comput., 11
H. Ishibuchi, Kaname Narukawa, Noritaka Tsukamoto, Y. Nojima (2008)
An empirical study on similarity-based mating for evolutionary multiobjective combinatorial optimizationEur. J. Oper. Res., 188
F. Lobo, C.F.P. Lima, Z. Michalewicz (2007)
Parameter Setting in Evolutionary Algorithms, 54
D. Goldberg, K. Deb (1990)
A Comparative Analysis of Selection Schemes Used in Genetic Algorithms
Li Mei-yi, Cai Zi-xing, Sun Guo-yun (2004)
An adaptive genetic algorithm with diversity-guided mutation and its global convergence propertyJournal of Central South University of Technology, 11
S. Tsutsui, Y. Fujimoto, Ashish Ghosh (1997)
Forking Genetic Algorithms: GAs with Search Space Division SchemesEvolutionary Computation, 5
Lourdes Araujo, J. Guervós (2011)
Diversity Through Multiculturality: Assessing Migrant Choice Policies in an Island ModelIEEE Transactions on Evolutionary Computation, 15
N. McPhee, Nicholas Hopper (1999)
Analysis of genetic diversity through population history
G. Harik, F. Lobo, D. Goldberg (1998)
The compact genetic algorithm1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360)
H. Beyer, K. Deb (2001)
On self-adaptive features in real-parameter evolutionary algorithmsIEEE Trans. Evol. Comput., 5
M. Gen, R. Cheng (1997)
Genetic algorithms and engineering design
E. Jong, R. Watson, J. Pollack (2001)
Reducing bloat and promoting diversity using multi-objective methods
Bernd Freisleben, P. Merz (1996)
A genetic local search algorithm for solving symmetric and asymmetric traveling salesman problemsProceedings of IEEE International Conference on Evolutionary Computation
J. Brest, S. Greiner, B. Bošković, M. Mernik, V. Zumer (2006)
Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark ProblemsIEEE Transactions on Evolutionary Computation, 10
E. Zitzler, L. Thiele (1999)
Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approachIEEE Trans. Evol. Comput., 3
E. Burke, Steven Gustafson, G. Kendall, N. Krasnogor (2002)
Advanced Population Diversity Measures in Genetic Programming
共立出版株式会社 (1978)
コンピュータ・サイエンス : ACM computing surveys
R. Ursem (2002)
Diversity-Guided Evolutionary Algorithms
E. Ronald (1995)
When Selection Meets Seduction
R. Joan-Arinyo, M. Luzón, E. Yeguas-Bolivar (2011)
Parameter tuning of PBIL and CHC evolutionary algorithms applied to solve the Root Identification ProblemAppl. Soft Comput., 11
Z. Michalewicz (1996)
Genetic Algorithms + Data Structures = Evolution Programs
A. Eiben, R. Hinterding, Z. Michalewicz (1999)
Parameter control in evolutionary algorithmsIEEE Trans. Evol. Comput., 3
Tobias Storch (2004)
UNIVERSITY OF DORTMUND REIHE COMPUTATIONAL INTELLIGENCE COLLABORATIVE RESEARCH CENTER 531 Design and Management of Complex Technical Processes and Systems by means of Computational Intelligence Methods On the Choice of the Population Size
D. Goldberg, W. Shakespeare (2002)
Genetic Algorithms
Shih-Hsi Liu, M. Mernik, B. Bryant (2004)
PARAMETER CONTROL IN EVOLUTIONARY ALGORITHMS BY DOMAIN-SPECIFIC SCRIPTING LANGUAGE PPCEA
A. Eiben, C. Schippers (1998)
On Evolutionary Exploration and ExploitationFundam. Informaticae, 35
H. Amor, Achim Rettinger (2008)
Intelligent exploration for genetic algorithms: using self-organizing maps in evolutionary computation
Iztok Fister, M. Mernik, B. Filipič (2010)
A hybrid self-adaptive evolutionary algorithm for marker optimization in the clothing industryAppl. Soft Comput., 10
Q. Nguyen, Y. Ong, M. Lim (2009)
A Probabilistic Memetic FrameworkIEEE Transactions on Evolutionary Computation, 13
Shengxiang Yang (2008)
Genetic Algorithms with Memory- and Elitism-Based Immigrants in Dynamic EnvironmentsEvolutionary Computation, 16
H. Ishibuchi, Yasuhiro Hitotsuyanagi, Yoshihiko Wakamatsu, Y. Nojima (2010)
How to Choose Solutions for Local Search in Multiobjective Combinatorial Memetic Algorithms
Jianping Li, M. Balazs, G. Parks, P. Clarkson (2003)
Erratum: A Species Conserving Genetic Algorithm for Multimodal Function OptimizationEvolutionary Computation, 11
M. Mashinchi, M. Orgun, W. Pedrycz (2011)
Hybrid optimization with improved tabu searchAppl. Soft Comput., 11
Thomas Bäck, A. Eiben, Nikolai Vaart (2000)
An Empirical Study on GAs "Without Parameters"
S. Tsutsui, Ashish Ghosh, D. Corne, Y. Fujimoto (1997)
A Real Coded Genetic Algorithm with an Explorer and an Exploiter Populations
C. Ramsey, J. Grefenstette (1993)
Case-Based Initialization of Genetic Algorithms
L. Whitley, T. Starkweather (1990)
GENITOR II: a distributed genetic algorithmJ. Exp. Theor. Artif. Intell., 2
Joon-Yong Lee, Min-Soeng Kim, Jujang Lee (2011)
Compact Genetic Algorithms using belief vectorsAppl. Soft Comput., 11
P. Bosman, D. Thierens (2003)
The balance between proximity and diversity in multiobjective evolutionary algorithmsIEEE Trans. Evol. Comput., 7
G. Harik (1995)
Finding Multimodal Solutions Using Restricted Tournament Selection
H. Ishibuchi, Tadashi Yoshida, T. Murata (2003)
Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop schedulingIEEE Trans. Evol. Comput., 7
K. Zielinski, P. Weitkemper, R. Laur, K. Kammeyer (2009)
Optimization of Power Allocation for Interference Cancellation With Particle Swarm OptimizationIEEE Transactions on Evolutionary Computation, 13
J. Grefenstette (1986)
Optimization of Control Parameters for Genetic AlgorithmsIEEE Transactions on Systems, Man, and Cybernetics, 16
(1998)
Data Structures and Genetic Programming: Genetic Programming + Data Structures = Automatic Programming
Samir Mahfoud (1996)
Niching methods for genetic algorithms
A. Eiben, S. Smit (2011)
Parameter tuning for configuring and analyzing evolutionary algorithmsSwarm Evol. Comput., 1
Y. Tsujimura, M. Gen (1998)
Entropy-based genetic algorithm for solving TSP1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111), 2
A. Eiben, E. Marchiori, V. Valkó (2004)
Evolutionary Algorithms with On-the-Fly Population Size Adjustment
R. Smith, E. Smuda (1993)
Adaptively Resizing Populations: Algorithm, Analysis, and First ResultsComplex Syst., 9
Y. Leung, Yuping Wang (2001)
An orthogonal genetic algorithm with quantization for global numerical optimizationIEEE Trans. Evol. Comput., 5
C. Fonseca, P. Fleming (1995)
Multiobjective genetic algorithms made easy: selection sharing and mating restriction
Xiaodong Yin, N. Germay (1993)
A Fast Genetic Algorithm with Sharing Scheme Using Cluster Analysis Methods in Multimodal Function Optimization
Elizabeth Montero, M. Riff (2011)
On-the-fly calibrating strategies for evolutionary algorithmsInf. Sci., 181
Thomas Bäck, H. Schwefel (1993)
An Overview of Evolutionary Algorithms for Parameter OptimizationEvolutionary Computation, 1
李枚毅, 蔡自兴, 孙国荣 (2004)
An adaptive genetic algorithm with diversity-guided mutation and its global convergence property, 11
S. Adra, P. Fleming (2011)
Diversity Management in Evolutionary Many-Objective OptimizationIEEE Transactions on Evolutionary Computation, 15
V. Koumousis, C. Katsaras (2006)
A saw-tooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performanceIEEE Transactions on Evolutionary Computation, 10
Shih-Hsi Liu, M. Mernik (2006)
BI OM A 20 06 P roo fs ENTROPY-DRIVEN EXPLORATION AND EXPLOITATION IN EVOLUTIONARY ALGORITHMS
Zhiyong Li, Xiang Wang (2011)
Chaotic Differential Evolution Algorithm for Solving Constrained Optimization ProblemsInformation Technology Journal, 10
L. Fogel (1999)
Intelligence Through Simulated Evolution: Forty Years of Evolutionary Programming
M. Mauldin (1984)
Maintaining Diversity in Genetic Search
Marcus Hutter, S. Legg (2006)
Fitness uniform optimizationIEEE Transactions on Evolutionary Computation, 10
R. Becerra, C. Coello (2006)
Cultured differential evolution for constrained optimizationComputer Methods in Applied Mechanics and Engineering, 195
Y. Ong, M. Lim, N. Zhu, K. Wong (2006)
Classification of adaptive memetic algorithms: a comparative studyIEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 36
W. Hart (1994)
Adaptive global optimization with local search
M. Luerssen (2005)
Phenotype Diversity Objectives for Graph Grammar Evolution
Kai Goh, A. Lim, B. Rodrigues (2003)
Sexual Selection for Genetic AlgorithmsArtificial Intelligence Review, 19
A. Qin, V. Huang, P. Suganthan (2009)
Differential Evolution Algorithm With Strategy Adaptation for Global Numerical OptimizationIEEE Transactions on Evolutionary Computation, 13
T. Friedrich, P. Oliveto, Dirk Sudholt, C. Witt
Design and Management of Complex Technical Processes and Systems by Means of Computational Intelligence Methods Theoretical Analysis of Diversity Mechanisms for Global Exploration Theoretical Analysis of Diversity Mechanisms for Global Exploration
Brian McGinley, John Maher, C. O'Riordan, F. Morgan (2011)
Maintaining Healthy Population Diversity Using Adaptive Crossover, Mutation, and SelectionIEEE Transactions on Evolutionary Computation, 15
Y. Leung, Yong Gao, Zongben Xu (1997)
Degree of population diversity - a perspective on premature convergence in genetic algorithms and its Markov chain analysisIEEE transactions on neural networks, 8 5
N. Chaiyaratana, Theera Piroonratana, N. Sangkawelert (2007)
Effects of diversity control in single-objective and multi-objective genetic algorithmsJournal of Heuristics, 13
R. Smith, S. Forrest, A. Perelson (1993)
Searching for Diverse, Cooperative Populations with Genetic AlgorithmsEvolutionary Computation, 1
L. Eshelman, J. Schaffer (1991)
Preventing Premature Convergence in Genetic Algorithms by Preventing Incest
X. Yao, Yong Liu, Guangming Lin (1999)
Evolutionary programming made fasterIEEE Trans. Evol. Comput., 3
L. Eshelman (1990)
The CHC Adaptive Search Algorithm: How to Have Safe Search When Engaging in Nontraditional Genetic Recombination
C. Chow, S. Yuen (2011)
An Evolutionary Algorithm That Makes Decision Based on the Entire Previous Search HistoryIEEE Transactions on Evolutionary Computation, 15
Ingo Paenke, Yaochu Jin, J. Branke (2009)
Balancing Population- and Individual-Level Adaptation in Changing EnvironmentsAdaptive Behavior, 17
Xinchao Zhao (2011)
Simulated annealing algorithm with adaptive neighborhoodAppl. Soft Comput., 11
W. Martin, J. Lienig, J. Cohoon (1997)
C6.3 Island (migration) models: evolutionary algorithms based on punctuated equilibria
J. Koza (1993)
Genetic programming - on the programming of computers by means of natural selection
Gang Chen, C. Low, Zhonghua Yang (2009)
Preserving and Exploiting Genetic Diversity in Evolutionary Programming AlgorithmsIEEE Transactions on Evolutionary Computation, 13
Tjorben Bogon, Georgios Poursanidis, Andreas Lattner, I. Timm (2011)
Extraction of Function Features for an Automatic Configuration of Particle Swarm Optimization
J. Fernández-Prieto, J. Bago, M. Gadeo-Martos, J. Velasco (2011)
Optimisation of control parameters for genetic algorithms to test computer networks under realistic traffic loadsAppl. Soft Comput., 11
T. Liao (2010)
Two hybrid differential evolution algorithms for engineering design optimizationAppl. Soft Comput., 10
A. Pétrowski (1996)
A clearing procedure as a niching method for genetic algorithmsProceedings of IEEE International Conference on Evolutionary Computation
E. Yu, P. Suganthan (2010)
Ensemble of niching algorithmsInf. Sci., 180
D. Mongus, Blaz Repnik, M. Mernik, B. Žalik (2012)
A hybrid evolutionary algorithm for tuning a cloth-simulation modelAppl. Soft Comput., 12
Jian-Ping Li, Márton Balázs, Geoffrey Parks, P. Clarkson (2002)
A Species Conserving Genetic Algorithm for Multimodal Function OptimizationEvolutionary Computation, 10
Thomas Bäck (1996)
Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms
M. Majig, Masao Fukushima (2008)
Adaptive Fitness Function for Evolutionary Algorithm and Its ApplicationsInternational Conference on Informatics Education and Research for Knowledge-Circulating Society (icks 2008)
A. Toffolo, E. Benini (2003)
Genetic Diversity as an Objective in Multi-Objective Evolutionary AlgorithmsEvolutionary Computation, 11
H. Mühlenbein, G. Paass (1996)
From Recombination of Genes to the Estimation of Distributions I. Binary Parameters
L. José-Revuelta (2007)
A new adaptive genetic algorithm for fixed channel assignmentInformation Sciences, 177
P. Calégari, G. Coray, A. Hertz, D. Kobler, P. Kuonen (1999)
A Taxonomy of Evolutionary Algorithms in Combinatorial OptimizationJournal of Heuristics, 5
B. Sareni, L. Krähenbühl (1998)
Fitness sharing and niching methods revisitedIEEE Trans. Evol. Comput., 2
(1996)
Adaptation of genetic algorithm parameters based on fuzzy logic controllers. Genetic Algorith. Soft Comput
Johann Dréo (2009)
Using performance fronts for parameter setting of stochastic metaheuristics
R. Storn, K. Price (1997)
Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous SpacesJournal of Global Optimization, 11
K. DeJong (1975)
An analysis of the behavior of a class of genetic adaptive systems
P. Merz, Bernd Freisleben (2000)
Fitness landscape analysis and memetic algorithms for the quadratic assignment problemIEEE Trans. Evol. Comput., 4
S. Smit, A. Eiben (2009)
Comparing parameter tuning methods for evolutionary algorithms2009 IEEE Congress on Evolutionary Computation
Shih-Hsi Liu, M. Mernik, B. Bryant (2009)
To explore or to exploit: An entropy-driven approach for evolutionary algorithmsInt. J. Knowl. Based Intell. Eng. Syst., 13
A. Eiben, Z. Michalewicz, Marc Schoenauer, J. Smith (2007)
Parameter Control in Evolutionary Algorithms
C. Mattiussi, M. Waibel, D. Floreano (2004)
Measures of Diversity for Populations and Distances Between Individuals with Highly Reorganizable GenomesEvolutionary Computation, 12
A. Czarn, C. MacNish, K. Vijayan, B. Turlach, Ritu Gupta (2004)
Statistical exploratory analysis of genetic algorithmsIEEE Transactions on Evolutionary Computation, 8
Alfonsas Misevičius (2011)
Generation of grey Patterns using an Improved Geneticevolutionary Algorithm: some New ResultsInf. Technol. Control., 40
G. Greewood, G. Fogel, M. Ciobanu (1999)
Emphasizing extinction in evolutionary programmingProceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), 1
N. Krasnogor, James Smith (2005)
A tutorial for competent memetic algorithms: model, taxonomy, and design issuesIEEE Transactions on Evolutionary Computation, 9
T. Bartz-Beielstein, Christian Lasarczyk, M. Preuss (2005)
Sequential parameter optimization2005 IEEE Congress on Evolutionary Computation, 1
R. Ursem (2000)
Multinational GAs: Multimodal Optimization Techniques in Dynamic Environments
T. Krink, Peter Rickers, R. Thomsen (2000)
Applying Self-Organised Criticality to Evolutionary Algorithms
Jeffrey Horn, Nicholas Nafpliotis, D. Goldberg (1994)
A niched Pareto genetic algorithm for multiobjective optimizationProceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence
M. Črepinšek, M. Mernik, Shih-Hsi Liu (2011)
Analysis of exploration and exploitation in evolutionary algorithms by ancestry treesInternational Journal of Innovative Computing and Applications, 3
Hao Gao, Wenbo Xu (2011)
Particle swarm algorithm with hybrid mutation strategyAppl. Soft Comput., 11
C. Soza, R. Becerra, M. Riff, C. Coello (2011)
Solving timetabling problems using a cultural algorithmAppl. Soft Comput., 11
L. Masisi, F. Nelwamondo, T. Marwala (2008)
The use of entropy to measure structural diversity2008 IEEE International Conference on Computational Cybernetics
O. Mengshoel, D. Goldberg (1999)
Probabilistic Crowding: Deterministic Crowding with Probabilistic Replacement
L. Whitley, Keith Mathias, P. Fitzhorn (1991)
Delta Coding: An Iterative Search Strategy for Genetic Algorithms
D. Goldberg (1988)
Genetic Algorithms in Search Optimization and Machine Learning
P. Moscato (1999)
Memetic algorithms: a short introduction
J. Schaffer, R. Caruana, L. Eshelman, R. Das (1989)
A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization
M. Gen, R. Cheng (1996)
Genetic Algorithms and Manufacturing Systems Design
T. Bersano-Begey (1997)
Controlling Exploration , Diversity and Escaping Local Optima in GP : Adapting Weights of Training Sets to Model Resource Consumption
E. Zitzler, K. Deb, L. Thiele (2000)
Comparison of Multiobjective Evolutionary Algorithms: Empirical ResultsEvolutionary Computation, 8
Thomas Bäck (1994)
Selective Pressure in Evolutionary Algorithms: A Characterization of Selection Mechanisms
H. Shimodaira (1997)
DCGA: a diversity control oriented genetic algorithmProceedings Ninth IEEE International Conference on Tools with Artificial Intelligence
E. Alba, B. Dorronsoro (2005)
The exploration/exploitation tradeoff in dynamic cellular genetic algorithmsIEEE Transactions on Evolutionary Computation, 9
D. Curran, C. O'Riordan (2006)
Increasing Population Diversity Through Cultural LearningAdaptive Behavior, 14
A. Moraglio, Yong-Hyuk Kim, Yourim Yoon, B. Moon (2007)
Geometric Crossovers for Multiway Graph PartitioningEvolutionary Computation, 15
J. Rosca (1995)
Proceedings of the Workshop on Genetic Programming: From Theory to Real-World Applications
(2011)
Received September
Xinchao Zhao (2011)
Simulated annealing algorithm with adaptive neighborhoodApplied Soft Computing, 11
T. Fogarty (1989)
Varying the Probability of Mutation in the Genetic Algorithm
J. Hesser, R. Männer (1990)
Towards an Optimal Mutation Probability for Genetic Algorithms
Yong Wang, Zixing Cai, Qingfu Zhang (2012)
Enhancing the search ability of differential evolution through orthogonal crossoverInf. Sci., 185
D. Goldberg, J. Richardson (1987)
Genetic Algorithms with Sharing for Multimodalfunction Optimization
M. Mernik, J. Heering, A. Sloane (2005)
When and how to develop domain-specific languagesACM Comput. Surv., 37
M. Srinivas, L. Patnaik (1994)
Adaptive probabilities of crossover and mutation in genetic algorithmsIEEE Trans. Syst. Man Cybern., 24
Dongli Jia, Guoxin Zheng, M. Khan (2011)
An effective memetic differential evolution algorithm based on chaotic local searchInf. Sci., 181
Gary Yen (2010)
Self-Organizing Maps
Wenyin Gong, Z. Cai, Liangxiao Jiang (2008)
Enhancing the performance of differential evolution using orthogonal design methodAppl. Math. Comput., 206
J. Holland (1975)
Adaptation in natural and artificial systems
Yong Liang, K. Leung (2011)
Genetic Algorithm with adaptive elitist-population strategies for multimodal function optimizationAppl. Soft Comput., 11
C. Blum, Jakob Puchinger, G. Raidl, A. Roli (2011)
Hybrid metaheuristics in combinatorial optimization: A surveyAppl. Soft Comput., 11
Yuk-Yin Wong, Kin-Hong Lee, K. Leung, C. Ho (2003)
A novel approach in parameter adaptation and diversity maintenance for genetic algorithmsSoft Computing, 7
E. Talbi (2002)
A Taxonomy of Hybrid MetaheuristicsJournal of Heuristics, 8
C. Blum, A. Roli (2003)
Metaheuristics in combinatorial optimization: Overview and conceptual comparisonACM Comput. Surv., 35
W. Spears (1995)
Adapting Crossover in Evolutionary Algorithms
Exploration and Exploitation in Evolutionary Algorithms: A Survey MATEJ CREPINSEK, University of Maribor SHIH-HSI LIU, California State University, Fresno MARJAN MERNIK, University of Maribor "Exploration and exploitation are the two cornerstones of problem solving by search." For more than a decade, Eiben and Schippers' advocacy for balancing between these two antagonistic cornerstones still greatly influences the research directions of evolutionary algorithms (EAs) [1998]. This article revisits nearly 100 existing works and surveys how such works have answered the advocacy. The article introduces a fresh treatment that classifies and discusses existing work within three rational aspects: (1) what and how EA components contribute to exploration and exploitation; (2) when and how exploration and exploitation are controlled; and (3) how balance between exploration and exploitation is achieved. With a more comprehensive and systematic understanding of exploration and exploitation, more research in this direction may be motivated and refined. Categories and Subject Descriptors: I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, and Search--Heuristic method General Terms: Algorithms Additional Key Words and Phrases: Diversity, exploration and exploitation, evolutionary algorithms ACM Reference Format: Crepin ek, M., Liu, S.-H., and Mernik, M. 2013. Exploration and exploitation in evolutionary algorithms: A s survey. ACM Comput. Surv.
ACM Computing Surveys (CSUR) – Association for Computing Machinery
Published: Jun 1, 2013
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.