Access the full text.
Sign up today, get DeepDyve free for 14 days.
A. Puretzky, L. Liang, Xufan Li, Kai Xiao, B. Sumpter, V. Meunier, D. Geohegan (2016)
Twisted MoSe₂ Bilayers with Variable Local Stacking and Interlayer Coupling Revealed by Low-Frequency Raman Spectroscopy.ACS nano, 10 2
Isoelectronic tungsten doping in monolayer MoSe 2 : From carrier type modulation to p – n homojunction
Honglai Li, Xidong Duan, Xueping Wu, Xiujuan Zhuang, Hong Zhou, Qinglin Zhang, Xiaoli Zhu, Wei Hu, Pinyun Ren, Pengfei Guo, Liang Ma, Xiaopeng Fan, Xiaoxia Wang, Jinyou Xu, A. Pan, X. Duan (2014)
Growth of alloy MoS(2x)Se2(1-x) nanosheets with fully tunable chemical compositions and optical properties.Journal of the American Chemical Society, 136 10
Mei Zhang, Juanxia Wu, Yiming Zhu, D. Dumcenco, Jinhua Hong, Nannan Mao, Shibin Deng, Yanfeng Chen, Yanlian Yang, C. Jin, S. Chaki, Ying-Sheng Huang, Jin Zhang, Liming Xie (2014)
Two-dimensional molybdenum tungsten diselenide alloys: photoluminescence, Raman scattering, and electrical transport.ACS nano, 8 7
Xingli Wang, Y. Gong, G. Shi, W. Chow, Kunttal Keyshar, Gonglan Ye, R. Vajtai, J. Lou, Zheng Liu, E. Ringe, B. Tay, P. Ajayan (2014)
Chemical vapor deposition growth of crystalline monolayer MoSe2.ACS nano, 8 5
Anlian and (2014)
Growth of Alloy MoS2xSe2(1—x) Nanosheets with Fully Tunable Chemical Compositions and Optical Properties.ChemInform, 45
S. Tongay, W. Fan, Jun Kang, Joonsuk Park, U. Koldemir, Joonki Suh, Deepa Narang, Kai Liu, J. Ji, Jingbo Li, R. Sinclair, Junqiao Wu (2014)
Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers.Nano letters, 14 6
Sheneve Butler, S. Hollen, Linyou Cao, Yi Cui, J. Gupta, H. Gutiérrez, T. Heinz, S. Hong, Jiaxing Huang, A. Ismach, E. Johnston-Halperin, M. Kuno, Vladimir Plashnitsa, R. Robinson, R. Ruoff, S. Salahuddin, J. Shan, Li Shi, M. Spencer, M. Terrones, W. Windl, J. Goldberger (2013)
Progress, challenges, and opportunities in two-dimensional materials beyond graphene.ACS nano, 7 4
B. Radisavljevic, A. Radenović, J. Brivio, V. Giacometti, A. Kis (2011)
Single-layer MoS2 transistors.Nature nanotechnology, 6 3
A. Tebano, E. Fabbri, D. Pergolesi, G. Balestrino, E. Traversa (2012)
Room-temperature giant persistent photoconductivity in SrTiO₃/LaAlO₃ heterostructures.ACS nano, 6 2
G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, P. Arquer, F. Gatti, F. Koppens (2011)
Hybrid graphene-quantum dot phototransistors with ultrahigh gain.Nature nanotechnology, 7 6
F. Withers, O. Pozo-Zamudio, A. Mishchenko, A. Rooney, A. Gholinia, Kenji Watanabe, T. Taniguchi, S. Haigh, SUPARNA DUTTASINHA, A. Tartakovskii, K. Novoselov (2014)
Light-emitting diodes by band-structure engineering in van der Waals heterostructures.Nature materials, 14 3
A. Puretzky, L. Liang, Xufan Li, Kai Xiao, Kai Wang, M. Mahjouri‐Samani, L. Basile, J. Idrobo, B. Sumpter, V. Meunier, D. Geohegan (2015)
Low-Frequency Raman Fingerprints of Two-Dimensional Metal Dichalcogenide Layer Stacking Configurations.ACS nano, 9 6
Chul‐Ho Lee, Gwan‐Hyoung Lee, A. Zande, Wenchao Chen, Yilei Li, Minyong Han, X. Cui, Ghidewon Arefe, C. Nuckolls, T. Heinz, Jing Guo, J. Hone, P. Kim (2014)
Atomically thin p-n junctions with van der Waals heterointerfaces.Nature nanotechnology, 9 9
Rui Cheng, Dehui Li, Hailong Zhou, Chen Wang, Anxiang Yin, Shanjuan Jiang, Yuan Liu, Yu Chen, Yu Huang, X. Duan (2014)
Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p–n DiodesNano Letters, 14
AK Geim, IV Grigorieva (2013)
van der Waals heterostructuresNature, 499
A. Horn, O. Katz, G. Bahir, J. Salzman (2006)
Surface states and persistent photocurrent in a GaN heterostructure field effect transistorSemiconductor Science and Technology, 21
Shimakawa (1986)
Persistent photocurrent in amorphous chalcogenides.Physical review. B, Condensed matter, 34 12
P. Rivera, J. Schaibley, Aaron Jones, J. Ross, Sanfeng Wu, G. Aivazian, P. Klement, K. Seyler, Genevieve Clark, N. Ghimire, Jiaqiang Yan, D. Mandrus, W. Yao, Xiaodong Xu (2014)
Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructuresNature Communications, 6
(2013)
Grigorieva : van der Waals heterostructures
X. Dang, C. Wang, E. Yu, K. Boutros, J. Redwing (1998)
Persistent photoconductivity and defect levels in n-type AlGaN/GaN heterostructuresApplied Physics Letters, 72
Ping Feng, I. Mönch, S. Harazim, Gaoshan Huang, Y. Mei, O. Schmidt (2009)
Giant persistent photoconductivity in rough silicon nanomembranes.Nano letters, 9 10
Kallol Roy, M. Padmanabhan, S. Goswami, T. Sai, Gopalakrishnan Ramalingam, S. Raghavan, A. Ghosh (2013)
Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices.Nature nanotechnology, 8 11
Ming-Hui Chiu, Chendong Zhang, H. Shiu, Chih-Piao Chuu, Chang-Hsiao Chen, C. Chang, Chia-Hao Chen, M. Chou, C. Shih, Lain‐Jong Li (2014)
Determination of band alignment in the single-layer MoS2/WSe2 heterojunctionNature Communications, 6
Joonki Suh, T. Park, D. Lin, D. Fu, Joonsuk Park, Hee Jung, Yabin Chen, C. Ko, C. Jang, Yinghui Sun, R. Sinclair, Joonyeon Chang, S. Tongay, Junqiao Wu (2014)
Doping against the native propensity of MoS2: degenerate hole doping by cation substitution.Nano letters, 14 12
Xiaoping Hong, Jonghwan Kim, Sufei Shi, Yu Zhang, Chenhao Jin, Yinghui Sun, S. Tongay, Junqiao Wu, Yanfeng Zhang, Feng Wang (2014)
Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures.Nature nanotechnology, 9 9
Hui Fang, C. Battaglia, C. Carraro, S. Nemšák, B. Ozdol, Jeong Kang, H. Bechtel, S. Desai, F. Kronast, A. Unal, G. Conti, C. Conlon, G. Pálsson, Michael Martin, A. Minor, C. Fadley, E. Yablonovitch, R. Maboudian, A. Javey (2014)
Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenidesProceedings of the National Academy of Sciences, 111
Y. Gong, Zheng Liu, A. Lupini, G. Shi, Junhao Lin, S. Najmaei, Zhong Lin, A. Elías, A. Berkdemir, Ge You, H. Terrones, M. Terrones, R. Vajtai, S. Pantelides, S. Pennycook, J. Lou, Wu Zhou, P. Ajayan (2014)
Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide.Nano letters, 14 2
Kentaro Okamoto, Hisako Sato, K. Saruwatari, K. Tamura, J. Kameda, T. Kogure, Y. Umemura, A. Yamagishi (2007)
Persistent Phenomena in Photocurrent of Niobate NanosheetsJournal of Physical Chemistry C, 111
Van der Waals (vdW) heterojunctions consisting of vertically-stacked individual or multiple layers of two-dimensional layered semiconductors, especially the transition metal dichalcogenides (TMDs), show novel optoelectronic functionalities due to the sensitivity of their electronic and optical properties to strong quantum confinement and interfacial interactions. Here, monolayers of n-type MoSe2 and p-type Mo1− xWxSe2 are grown by vapor transport methods, then transferred and stamped to form artificial vdW heterostructures with strong interlayer coupling as proven in photoluminescence and low-frequency Raman spectroscopy measurements. Remarkably, the heterojunctions exhibit an unprecedented photoconductivity effect that persists at room temperature for several days. This persistent photoconductivity is shown to be tunable by applying a gate bias that equilibrates the charge distribution. These measurements indicate that such ultrathin vdW heterojunctions can function as rewritable optoelectronic switches or memory elements under time-dependent photo-illumination, an effect which appears promising for new monolayer TMDs-based optoelectronic devices applications.
Journal of Materials Research – Springer Journals
Published: Apr 1, 2016
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.