Access the full text.
Sign up today, get DeepDyve free for 14 days.
P. Whitfield, S. Niketic, I. Davidson (2005)
Effects of synthesis on electrochemical, structural and physical properties of solution phases of Li2MnO3–LiNi1−xCoxO2Journal of Power Sources, 146
B. Ellis, K. Lee, L. Nazar (2010)
Positive Electrode Materials for Li-Ion and Li-Batteries†Chemistry of Materials, 22
Christopher Johnson, Jeom‐Soo Kim, A. Kropf, A. Kahaian, J. Vaughey, M. Thackeray (2003)
Structural and electrochemical evaluation of (1 − x)Li2TiO3·(x)LiMn0.5Ni0.5O2 electrodes for lithium batteriesJournal of Power Sources, 119
Sun‐Ho Kang, M. Thackeray (2009)
Enhancing the rate capability of high capacity xLi2MnO3 · (1 -x)LiMO2 (M = Mn, Ni, Co) electrodes by Li-Ni-PO4 treatmentElectrochemistry Communications, 11
J. Reimers, E. Fuller, E. Rossen, J. Dahn (1993)
Synthesis and Electrochemical Studies of LiMnO2 Prepared at Low TemperaturesJournal of The Electrochemical Society, 140
M. Holzapfel, A. Würsig, W. Scheifele, J. Vetter, P. Novák (2007)
Oxygen, hydrogen, ethylene and CO2 development in lithium-ion batteriesJournal of Power Sources, 174
T. Ohzuku, A. Ueda, M. Nagayama, Yasunobu Iwakoshi, H. Komori (1993)
Comparative study of LiCoO2, LiNi12Co12O2 and LiNiO2 for 4 volt secondary lithium cellsElectrochimica Acta, 38
P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. Tarascon (2000)
Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteriesNature, 407
T. Ohzuku, R. Brodd (2007)
An overview of positive-electrode materials for advanced lithium-ion batteriesJournal of Power Sources, 174
Christopher Johnson, Naichao Li, J. Vaughey, S. Hackney, M. Thackeray (2005)
Lithium–manganese oxide electrodes with layered–spinel composite structures xLi2MnO3 · (1 − x)Li1 + yMn2 − yO4 (0 < x < 1, 0 ⩽ y ⩽ 0.33) for lithium batteriesElectrochemistry Communications, 7
B. Ammundsen, J. Paulsen (2001)
Novel Lithium‐Ion Cathode Materials Based on Layered Manganese OxidesAdvanced Materials, 13
Christopher Johnson, Naichao Li, Christina Lefief, M. Thackeray (2007)
Anomalous capacity and cycling stability of xLi2MnO3 · (1 − x)LiMO2 electrodes (M = Mn, Ni, Co) in lithium batteries at 50 °CElectrochemistry Communications, 9
A. Aricò, P. Bruce, B. Scrosati, J. Tarascon, W. Schalkwijk (2005)
Nanostructured materials for advanced energy conversion and storage devicesNature Materials, 4
(2002)
Understanding the Anomalous Capacity of Li / Li [ Ni x Li ( 1 / 3 − 2x / 3 ) Mn ( 2 / 3 − x / 3 ) ] O 2 Cells Using In Situ X-Ray Diffraction and Electrochemical Studies
Marius Amereller, M. Whittingham (2004)
Lithium batteries and cathode materials.Chemical reviews, 104 10
Zhonghua Lu, Zhaohui Chen, J. Dahn (2003)
Lack of Cation Clustering in Li[NixLi1/3-2x/3Mn2/3-x/3]O2 (0 < x ≤ 1/2) and Li[CrxLi(1-x)/3Mn(2-2x)/3]O2 (0 < x < 1)Chemistry of Materials, 15
L. Picciotto, M. Thackeray, W. David, P. Bruce, J. Goodenough (1984)
Structural characterization of delithiated LiVO2Materials Research Bulletin, 19
K. Ariyoshi, Yasunobu Iwakoshi, N. Nakayama, T. Ohzuku (2004)
Topotactic Two-Phase Reactions of Li [ Ni1 / 2Mn3 / 2 ] O 4 ( P4332 ) in Nonaqueous Lithium CellsJournal of The Electrochemical Society, 151
Y. Meng, G. Ceder, C. Grey, W. Yoon, Meng Jiang, and Breger, Y. Shao-horn (2005)
Cation Ordering in Layered O3 Li[NixLi1/3-2x/3Mn2/3-x/3]O2 (0 ≤ x ≤ 1/2) CompoundsChemistry of Materials, 17
I. Kötschau, J. Dahn (1998)
In Situ X‐Ray Study of LiMnO2Journal of The Electrochemical Society, 145
T. Arunkumar, E. Alvarez, A. Manthiram (2007)
Structural, Chemical, and Electrochemical Characterization of Layered Li [ Li0.17Mn0.33Co0.5 − y Ni y ] O2 CathodesJournal of The Electrochemical Society, 154
T. Ohzuku, Shinya Kitano, Masato Iwanaga, H. Matsuno, A. Ueda (1997)
Comparative study of Li[LixMn2 − xO4 and LT-LiMnO2 for lithium-ion batteriesJournal of Power Sources, 68
Dong-Ju Lee, S. Park, K. Amine, H. Bang, J. Parakash, Y-K. Sun (2006)
High capacity Li[Li0.2Ni0.2Mn0.6]O2 cathode materials via a carbonate co-precipitation methodJournal of Power Sources, 162
C. Johnson, Jeom‐Soo Kim, A. Kropf, A. Kahaian, J. Vaughey, M. Thackeray (2002)
The role of Li2MO2 structures (M=metal ion) in the electrochemistry of (x)LiMn0.5Ni0.5O2·(1−x)Li2TiO3 electrodes for lithium-ion batteriesElectrochemistry Communications, 4
Christopher Johnson, J. Kim, Christina Lefief, Naichao Li, J. Vaughey, M. Thackeray (2004)
The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3 · (1 − x)LiMn0.5Ni0.5O2 electrodesElectrochemistry Communications, 6
A. Ueda, T. Ohzuku (1994)
Solid‐State Redox Reactions of LiNi1 / 2Co1 / 2 O 2 ( R 3̄m ) for 4 Volt Secondary Lithium CellsJournal of The Electrochemical Society, 141
Atsushi Ito, De-cheng Li, Y. Ohsawa, Yuichi Sato (2008)
A new approach to improve the high-voltage cyclic performance of Li-rich layered cathode material by electrochemical pre-treatmentJournal of Power Sources, 183
T. Ohzuku, Y. Makimura (2006)
Formation of solid solution and its effect on lithium insertion schemes for advanced lithium-ion batteries: X-ray absorption spectroscopy and X-ray diffraction of LiCoO2, LiCo1/2Ni1/2O2 and LiNiO2Research on Chemical Intermediates, 32
M. Winter, Jürgen Besenhard, M. Spahr, P. Novák (1998)
Insertion Electrode Materials for Rechargeable Lithium BatteriesAdvanced Materials, 10
Atsushi Ito, De-cheng Li, Yuichi Sato, M. Arao, Manabu Watanabe, M. Hatano, H. Horie, Y. Ohsawa (2010)
Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2Journal of Power Sources, 195
G. Moore, Christopher Johnson, M. Thackeray (2003)
The electrochemical behavior of xLiNiO2·(1 − x)Li2RuO3 and Li2Ru1−yZryO3 electrodes in lithium cellsJournal of Power Sources, 119
T. Ohzuku, Y. Makimura (2001)
Layered Lithium Insertion Material of LiNi1/2Mn1/2O2 : A Possible Alternative to LiCoO2 for Advanced Lithium-Ion BatteriesChemistry Letters, 2001
J. Bréger, Meng Jiang, N. Dupré, Y. Meng, Y. Shao-horn, G. Ceder, C. Grey (2005)
High-resolution X-ray diffraction, DIFFaX, NMR and first principles study of disorder in the Li2MnO3-Li[Ni1/2Mn1/2]O2 solid solutionJournal of Solid State Chemistry, 178
Zhonghua Lu, J. Dahn (2002)
Structure and Electrochemistry of Layered Li [ Cr x Li ( 1 / 3 − x / 3 ) Mn ( 2 / 3 − 2x / 3 ) ] O 2Journal of The Electrochemical Society, 149
T. Ohzuku, A. Ueda (1994)
Why transition metal (di)oxides are the most attractive materials for batteriesSolid State Ionics, 69
A. Armstrong, M. Holzapfel, P. Novák, C. Johnson, Sun‐Ho Kang, M. Thackeray, P. Bruce (2006)
Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2.Journal of the American Chemical Society, 128 26
T. Ohzuku, A. Ueda, M. Kouguchi (1995)
Synthesis and Characterization of LiAl1 / 4Ni3 / 4 O 2 ( R 3̄m ) for Lithium‐Ion (Shuttlecock) BatteriesJournal of The Electrochemical Society, 142
Lithium nickel manganese oxides Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 (x = 1/2, 2/7, and 1/5) are prepared and characterized by XRD and FT-IR, and the samples are examined in non-aqueous lithium cells at room temperature and 55 °C. Among these materials LiNi1/2Mn1/2O2 (x = 1/2) shows the highest operating voltage and the smallest polarization with a rechargeable capacity of ca. 230 mA h g−1 and Li[Li1/5Ni1/5Mn3/5]O2 (x = 1/5) shows the lowest operating voltage and the largest polarization with a rechargeable capacity more than 300 mA h g−1. Extraordinarily large rechargeable capacity of Li[Li1/5Ni1/5Mn3/5]O2 together with an anomalously long voltage plateau at 4.5 V only observed at first charging process is examined by window-opening charge and discharge, continuous charge and discharge combined with differential chronopotentiometry at room temperature and at 55 °C, and possible mechanisms are discussed in terms of lithium insertion scheme.
Journal of Materials Chemistry – Royal Society of Chemistry
Published: Jun 28, 2011
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.