R.W. Farebrother (1987)
Three theorems with applications to Euclidean distance matricesLinear Algebra Appl., 95
M.V. Ramana (1993)
An algorithmic analysis of multiquadratic and semidefinite programming problems
F. Alizadeh, J.-P. Haeberly, M.V. Nayakkankuppam, M.L. Overton (1997)
Sdppack user's guide—version 0.8 beta
F. Alizadeh (1995)
Interior Point Methods in Semidefinite Programming with Applications to Combinatorial OptimizationSIAM Journal on Optimization, 5
W. Glunt, T.L. Hayden, S. Hong, J. Wells (1990)
An alternating projection algorithm for computing the nearest Euclidean distance matrixSIAM J. Matrix Anal. Appl., 11
G. Pataki (1996)
Cone programming and eigenvalue optimization: Geometry and algorithms
R.A. Brualdi, H.J. Ryser (1991)
Combinatorial Matrix Theory
J.J. Moré, Z. Wu (1996)
Global continuation for distance geometry problems
I.J. Schoenberg (1935)
Remarks to Maurice Frechet's article: Sur la definition axiomatique d'une classe d'espaces vectoriels distancies applicables vectoriellement sur l'espace de HilbertAnn. Math., 36
R.W. Farebrother (1987)
Three theorems with applications to euclidean distance matricesLinear Algebra Appl., 95
I.J. Schoenberg (1935)
Remarks to Maurice Frechet's Article ``Sur La Definition Axiomatique D'Une Classe D'Espace Distances Vectoriellement Applicable Sur L'Espace De HilbertAnn. Math., 36
L. Vandenberghe, S. Boyd (1996)
Semidefinite programmingSIAM Review, 38
M.X. Goemans (1997)
Mathematical Programmings, 79
M. Todd (1997)
On search directions in interior-point methods for semidefinite programming
M.W. Trosset (1997)
Applications of multidimensional scaling to molecular conformation
W. Glunt (1990)
An Alternating Projection Algorithm for Computing the Nearest Euclidean Distance MatrixSIAM J. Matrix Anal. Appl., 11
E.G. Gol'stein (1972)
Theory of Convex Programming
F. Alizadeh (1995)
Interior point methods in semidefinite programming with applications to combinatorial optimizationSIAM Journal on Optimization, 5
C. Johnson, B. Kroschel, H. Wolkowicz (1998)
An interior-point method for approximate positive semidefinite completionsComputational Optimization and Applications, 9
M.W. Trosset (1997)
Distance matrix completion by numerical optimization
W.S. Torgerson (1952)
Multidimensional scaling. I. Theory and methodPsychometrika, 17
M. Laurent (1998)
Topics in Semidefinite and Interior-Point Methods, The Fields Institute for Research in Mathematical Sciences
S. Al-Homidan, R. Fletcher (1995)
Recent Advances in Nonsmooth Optimization
S. Wright (1996)
Primal-Dual Interior-Point Methods
S. Kruk, M. Muramatsu, F. Rendl, R.J. Vanderbei, H. Wolkowicz (1998)
The Gauss-Newton direction in linear and semidefinite programming
F. Lempio, H. Maurer (1980)
Differential stability in infinite-dimensional nonlinear programmingAppl. Math. Optim., 6
M.W. Trosset (1997)
Computing distances between convex sets and subsets of the positive semidefinite matrices
J.J. Moré, Z. Wu (1997)
Distance geometry optimization for protein structures
Z. Zou, R.H. Byrd, R.B. Schnabel (1996)
A stochastic/perturbation global optimization algorithm for distance geometry problems
J.C. Gower (1985)
Properties of Euclidean and non-Euclidean distance matricesLinear Algebra Appl., 67
R.A. Brualdi (1991)
Combinatorial Matrix Theory
P. Tarazaga, T.L. Hayden, J. Wells (1996)
Circum-Euclidean distance matrices and facesLinear Algebra Appl., 232
H. Wolkowicz (1981)
Some applications of optimization in matrix theoryLinear Algebra and its Applications, 40
C. Johnson (1998)
An Interior-Point Method for Approximate Positive Semidefinite CompletionsComputational Optimization and Applications, 9
P. Tarazaga (1996)
Circum-Euclidean distance matrices and facesLinear Algebra Appl., 232
L. Vandenberghe (1996)
Semidefinite ProgrammingSIAM Review, 38
S. Lele (1993)
Euclidean Distance Matrix Analysis (EDMA): Estimation of mean form and mean form differenceMath. Geol., 25
R.A. Horn, C.R. Johnson (1985)
Matrix Analysis
M. Bakonyi (1995)
The Euclidian Distance Matrix Completion ProblemSIAM J. Matrix Anal. Appl., 16
F. Lempio (1980)
Differential stability in infinite-dimensional nonlinear programmingAppl. Math. Optim., 6
G.M. Crippen, T.F. Havel (1988)
Distance Geometry and Molecular Conformation
T.L. Hayden (1991)
The cone of distance matricesLinear Algebra Appl., 144
T.L. Hayden, J. Wells, W-M. Liu, P. Tarazaga (1991)
The cone of distance matricesLinear Algebra Appl., 144
Y. Ye (1997)
Interior Point Algorithms
R.A. Horn (1985)
Matrix Analysis
J.C. Gower (1985)
Properties of Euclidean and non-Euclidean distance matricesLinear Algebra Appl., 67
M.X. Goemans (1997)
Semidefinite programming in combinatorial optimizationMathematical Programmings, 79
F.Z. Zhang (1987)
Beijing Shifan Daxue Xuebao, 4
Y. Ye (1997)
Interior Point Algorithms: Theory and Analysis, Wiley-Interscience Series in Discrete Mathematics and Optimization
F. Critchley (1988)
On certain linear mappings between inner-product and squared distance matricesLinear Algebra Appl., 105
F.Z. Zhang (1987)
On the best Euclidean fit to a distance matrixBeijing Shifan Daxue Xuebao, 4
W.S. Torgerson (1952)
Multidimensional scaling: I. Theory and methodPsychometrika, 17
C. Helmberg (1994)
An interior point method for semidefinite programming and max-cut bounds
S. Lele (1993)
Euclidean distance matrix analysis (EDMA): Estimation of mean form and mean form differenceMath. Geol., 25
H. Wolkowicz (1981)
Some applications of optimization in matrix theoryLinear Algebra and its Applications, 40
C.R. Johnson (1995)
Connections between the real positive semidefinite and distance matrix completion problemsLinear Algebra Appl., 223/224
M. Bakonyi, C.R. Johnson (1995)
The Euclidean distance matrix completion problemSIAM J. Matrix Anal. Appl., 16
F. Critchley (1988)
On certain linear mappings between inner-product and squared-distance matricesLinear Algebra Appl., 105
C.R. Johnson, P. Tarazaga (1995)
Connections between the real positive semidefinite and distance matrix completion problemsLinear Algebra Appl., 223/224
Y.E. Nesterov, A.S. Nemirovski (1994)
Interior Point Polynomial Algorithms in Convex Programming
Given a partial symmetric matrix A with only certain elements specified, the Euclidean distance matrix completion problem (EDMCP) is to find the unspecified elements of A that make A a Euclidean distance matrix (EDM). In this paper, we follow the successful approach in [20] and solve the EDMCP by generalizing the completion problem to allow for approximate completions. In particular, we introduce a primal-dual interior-point algorithm that solves an equivalent (quadratic objective function) semidefinite programming problem (SDP). Numerical results are included which illustrate the efficiency and robustness of our approach. Our randomly generated problems consistently resulted in low dimensional solutions when no completion existed.
Computational Optimization and Applications – Springer Journals
Published: Oct 20, 2004
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.