Access the full text.
Sign up today, get DeepDyve free for 14 days.
M. Bogard, P. Giorgio, L. Boutet, M. Chaves, Y. Prairie, A. Merante, A. Derry (2014)
Oxic water column methanogenesis as a major component of aquatic CH4 fluxesNature Communications, 5
M. Ortíz-Llorente, M. Álvarez-Cobelas (2012)
Comparison of biogenic methane emissions from unmanaged estuaries, lakes, oceans, rivers and wetlandsAtmospheric Environment, 59
João Pinto, M. Reboita, R. Rocha (2013)
Synoptic and dynamical analysis of subtropical cyclone Anita (2010) and its potential for tropical transition over the South Atlantic OceanJournal of Geophysical Research: Atmospheres, 118
A. Campeau, P. Giorgio (2014)
Patterns in CH4 and CO2 concentrations across boreal rivers: Major drivers and implications for fluvial greenhouse emissions under climate change scenariosGlobal Change Biology, 20
S. Natchimuthu, B. Selvam, D. Bastviken (2014)
Influence of weather variables on methane and carbon dioxide flux from a shallow pondBiogeochemistry, 119
S. Juutinen, M. Väliranta, V. Kuutti, Anna Laine, T. Virtanen, H. Seppä, J. Weckström, E. Tuittila, E. Tuittila (2013)
Short‐term and long‐term carbon dynamics in a northern peatland‐stream‐lake continuum: A catchment approachJournal of Geophysical Research: Biogeosciences, 118
H. Hofmann (2013)
Spatiotemporal distribution patterns of dissolved methane in lakes: How accurate are the current estimations of the diffusive flux path?Geophysical Research Letters, 40
P. Bousquet, P. Ciais, John Miller, John Miller, E. Dlugokencky, D. Hauglustaine, C. Prigent, G. Werf, P. Peylin, E. Brunke, C. Carouge, R. Langenfelds, J. Lathiére, F. Papa, M. Ramonet, M. Schmidt, L. Steele, S. Tyler, J. White (2006)
Contribution of anthropogenic and natural sources to atmospheric methane variabilityNature, 443
K. Walter, S. Zimov, J. Chanton, D. Verbyla, F. Chapin (2006)
Methane bubbling from Siberian thaw lakes as a positive feedback to climate warmingNature, 443
D. Bastviken, A. Santoro, H. Marotta, L. Pinho, D. Calheiros, P. Crill, A. Enrich-Prast (2010)
Methane emissions from Pantanal, South America, during the low water season: toward more comprehensive sampling.Environmental science & technology, 44 14
J. Bubier, T. Moore, L. Bellisario, N. Comer, P. Crill (1995)
Ecological controls on methane emissions from a Northern Peatland Complex in the zone of discontinuous permafrost, Manitoba, CanadaGlobal Biogeochemical Cycles, 9
L. Finland (2012)
Factors controlling carbon gas fluxes in boreal lakes
Catherine Michmerhuizen, R. Striegl, M. McDonald (1996)
Potential methane emission from north-temperate lakes following ice meltLimnology and Oceanography, 41
I. Bergström, Suvi Mäkelä, P. Kankaala, P. Kortelainen (2007)
Methane efflux from littoral vegetation stands of southern boreal lakes : An upscaled regional estimateAtmospheric Environment, 41
K. Tang, D. McGinnis, Katharina Frindte, V. Brüchert, H. Grossart (2014)
Paradox reconsidered: Methane oversaturation in well‐oxygenated lake watersLimnology and Oceanography, 59
G. Yvon‐Durocher, J. Caffrey, A. Cescatti, M. Dossena, P. Giorgio, J. Gasol, J. Montoya, J. Pumpanen, P. Staehr, M. Trimmer, G. Woodward, A. Allen (2012)
Reconciling the temperature dependence of respiration across timescales and ecosystem typesNature, 487
A. Ojala, Jessica Bellido, T. Tulonen, P. Kankaala, J. Huotari (2011)
Carbon gas fluxes from a brown‐water and a clear‐water lake in the boreal zone during a summer with extreme rain eventsLimnology and Oceanography, 56
Takeshi Nakamura, Y. Nojiri, M. Utsumi, T. Nozawa, A. Otsuki (1999)
Methane emission to the atmosphere and cycling in a shallow eutrophic lakeArchiv Fur Hydrobiologie, 144
Jessica Bellido, E. Peltomaa, A. Ojala (2011)
An urban boreal lake basin as a source of CO₂ and CH₄.Environmental pollution, 159 6
S. Juutinen, M. Rantakari, P. Kortelainen, J. Huttunen, T. Larmola, J. Alm, J. Silvola, P. Martikainen (2009)
Methane dynamics in different boreal lake typesBiogeosciences, 6
John Downing, Y. Prairie, J. Cole, Carlos Duarte, L. Tranvik, R. Striegl, William McDowell, P. Kortelainen, N. Caraco, J. Melack, J. Middelburg (2006)
The global abundance and size distribution of lakes, ponds, and impoundmentsLimnology and Oceanography, 51
P. Kortelainen, M. Rantakari, H. Pajunen, J. Huttunen, T. Mattsson, S. Juutinen, T. Larmola, J. Alm, J. Silvola, P. Martikainen (2013)
Carbon evasion/accumulation ratio in boreal lakes is linked to nitrogenGlobal Biogeochemical Cycles, 27
J. Huttunen, J. Alm, A. Liikanen, S. Juutinen, T. Larmola, T. Hammar, J. Silvola, P. Martikainen (2003)
Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions.Chemosphere, 52 3
J. Lapierre, P. Giorgio (2012)
Geographical and environmental drivers of regional differences in the lake pCO2 versus DOC relationship across northern landscapesJournal of Geophysical Research, 117
P. Kortelainen, M. Rantakari, J. Huttunen, T. Mattsson, J. Alm, S. Juutinen, T. Larmola, J. Silvola, P. Martikainen (2006)
Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakesGlobal Change Biology, 12
E. Repo, J. Huttunen, A. Naumov, A. Chichulin, E. Lapshina, W. Bleuten, P. Martikainen (2007)
Release of CO2 and CH4 from small wetland lakes in western SiberiaTellus B: Chemical and Physical Meteorology, 59
Jessica Bellido, T. Tulonen, P. Kankaala, A. Ojala (2009)
CO2 and CH4 fluxes during spring and autumn mixing periods in a boreal lake (Pääjärvi, southern Finland)Journal of Geophysical Research, 114
D. Bastviken, J. Cole, M. Pace, L. Tranvik (2004)
Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimateGlobal Biogeochemical Cycles, 18
S. Solomon (2007)
The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 996
P. Kankaala, I. Bergström (2004)
Emission and oxidation of methane in Equisetum fluviatile stands growing on organic sediment and sand bottomsBiogeochemistry, 67
H. Grossart, Katharina Frindte, Claudia Dziallas, W. Eckert, K. Tang (2011)
Microbial methane production in oxygenated water column of an oligotrophic lakeProceedings of the National Academy of Sciences, 108
D. Bastviken, J. Cole, M. Pace, M. Bogert (2008)
Fates of methane from different lake habitats: Connecting whole‐lake budgets and CH4 emissionsJournal of Geophysical Research, 113
G. Kling, G. Kipphut, Michael Miller (1992)
The flux of CO2 and CH4 from lakes and rivers in arctic AlaskaHydrobiologia, 240
C. Kelly, D. Chynoweth (1981)
The contributions of temperature and of the input of organic matter in controlling rates of sediment methanogenesis1Limnology and Oceanography, 26
S. Sobek, L. Tranvik, J. Cole (2005)
Temperature independence of carbon dioxide supersaturation in global lakesGlobal Biogeochemical Cycles, 19
Allan Phelps, K. Peterson, M. Jeffries (1998)
Methane efflux from high‐latitude lakes during spring ice meltJournal of Geophysical Research, 103
N. Roulet, Rosemary Ash, T. Moore (1992)
Low boreal wetlands as a source of atmospheric methaneJournal of Geophysical Research, 97
E. Lundin, R. Giesler, A. Persson, M. Thompson, J. Karlsson (2013)
Integrating carbon emissions from lakes and streams in a subarctic catchmentJournal of Geophysical Research: Biogeosciences, 118
(2000)
Limnological Analysis
H. Marotta, L. Pinho, C. Gudasz, D. Bastviken, L. Tranvik, A. Enrich-Prast (2014)
Greenhouse gas production in low-latitude lake sediments responds strongly to warmingNature Climate Change, 4
L. Tranvik, J. Downing, J. Cotner, S. Loiselle, R. Striegl, T. Ballatore, P. Dillon, K. Finlay, K. Fortino, Lesley Knoll, P. Kortelainen, T. Kutser, S. Larsen, I. Laurion, D. Leech, S. McCallister, D. McKnight, J. Melack, E. Overholt, J. Porter, Y. Prairie, W. Renwick, F. Roland, B. Sherman, D. Schindler, S. Sobek, A. Tremblay, M. Vanni, A. Verschoor, Eddie Wachenfeldt, G. Weyhenmeyer (2009)
Lakes and reservoirs as regulators of carbon cycling and climateLimnology and Oceanography, 54
L. Smith, W. Lewis (1992)
Seasonality of methane emissions from five lakes and associated wetlands of the Colorado RockiesGlobal Biogeochemical Cycles, 6
A. Tremblay, J. Therrien, B. Hamlin, E. Wichmann, L. Ledrew (2005)
GHG Emissions from Boreal Reservoirs and Natural Aquatic Ecosystems
A. Bergström, A. Jonsson, M. Jansson (2008)
Phytoplankton responses to nitrogen and phosphorus enrichment in unproductive Swedish lakes along a gradient of atmospheric nitrogen depositionAquatic Biology, 4
J. Riera, J. Schindler, T. Kratz (1999)
Seasonal dynamics of carbon dioxide and methane in two clear-water lakes and two bog lakes in northern Wisconsin, U.S.A.Canadian Journal of Fisheries and Aquatic Sciences, 56
J. Lapierre, F. Guillemette, M. Berggren, P. Giorgio (2013)
Increases in terrestrially derived carbon stimulate organic carbon processing and CO2 emissions in boreal aquatic ecosystemsNature Communications, 4
Eddie Wachenfeldt, S. Sobek, D. Bastviken, L. Tranvik (2008)
Linking allochthonous dissolved organic matter and boreal lake sediment carbon sequestration: The role of light‐mediated flocculationLimnology and Oceanography, 53
F. Guérin, G. Abril, D. Serça, C. Delon, S. Richard, R. Delmas, A. Tremblay, L. Varfalvy (2007)
Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river downstreamJournal of Marine Systems, 66
J. Huotari, A. Ojala, E. Peltomaa, Annika Nordbo, S. Launiainen, J. Pumpanen, Terhi Rasilo, P. Hari, T. Vesala (2011)
Long‐term direct CO2 flux measurements over a boreal lake: Five years of eddy covariance dataGeophysical Research Letters, 38
T. Hyvönen, A. Ojala, P. Kankaala, P. Martikainen (1998)
Methane release from stands of water horsetail (Equisetum fluviatile) in a boreal lakeFreshwater Biology, 40
R. Alley, T. Berntsen, N. Bindoff, Zhenlin Chen, A. Chidthaisong, P. Friedlingstein, J. Gregory, G. Hegerl, M. Heimann, B. Hewitson, B. Hoskins, F. Joos, J. Jouzel, V. Kattsov, U. Lohmann, M. Manning, T. Matsuno, M. Molina, N. Nicholls, J. Overpeck, D. Qin, G. Raga, V. Ramaswamy, Jiawen Ren, M. Rusticucci, S. Solomon, R. Somerville, T. Stocker, P. Stott, R. Stouffer, P. Whetton, R. Wood, D. Wratt, J. Arblaster, G. Brasseur, J. Christensen, K. Denman, D. Fahey, P. Forster, E. Jansen, P. Jones, R. Knutti, H. Treut, P. Lemke, G. Meehl, P. Mote, D. Randall, D. Stone, K. Trenberth, J. Willebrand, F. Zwiers (2007)
Climate Change 2007: The Physical Science Basis
S. Juutinen, J. Alm, T. Larmola, J. Huttunen, M. Morero, P. Martikainen, J. Silvola (2003)
Major implication of the littoral zone for methane release from boreal lakesGlobal Biogeochemical Cycles, 17
R. Key, A. Kozyr, C. Sabine, Kitack Lee, R. Wanninkhof, J. Bullister, R. Feely, F. Millero, C. Mordy, T. Peng (2004)
A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP)Global Biogeochemical Cycles, 18
J. Ask, J. Karlsson, M. Jansson (2012)
Net ecosystem production in clear‐water and brown‐water lakesGlobal Biogeochemical Cycles, 26
T. DelSontro, M. Kunz, Tim Kempter, A. Wüest, B. Wehrli, D. Senn (2011)
Spatial heterogeneity of methane ebullition in a large tropical reservoir.Environmental science & technology, 45 23
D. Lofton, S. Whalen, A. Hershey (2013)
Effect of temperature on methane dynamics and evaluation of methane oxidation kinetics in shallow Arctic Alaskan lakesHydrobiologia, 721
D. Bastviken, L. Tranvik, J. Downing, P. Crill, A. Enrich-Prast (2011)
Freshwater Methane Emissions Offset the Continental Carbon SinkScience, 331
P. Giorgio, J. Cole, N. Caraco, R. Peters (1999)
LINKING PLANKTONIC BIOMASS AND METABOLISM TO NET GAS FLUXES IN NORTHERN TEMPERATE LAKESEcology, 80
A. Bergström, M. Jansson (2006)
Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphereGlobal Change Biology, 12
Y. Prairie, P. Giorgio (2013)
A new pathway of freshwater methane emissions and the putative importance of microbubblesInland Waters, 3
K. Anthony, P. Anthony, G. Grosse, J. Chanton (2012)
Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciersNature Geoscience, 5
R. Weast (1973)
CRC Handbook of Chemistry and Physics
D. Vachon, Y. Prairie, J. Cole (2010)
The relationship between near‐surface turbulence and gas transfer velocity in freshwater systems and its implications for floating chamber measurements of gas exchangeLimnology and Oceanography, 55
P. Casper, S. Maberly, G. Hall, B. Finlay (2000)
Fluxes of methane and carbon dioxide from a small productive lake to the atmosphereBiogeochemistry, 49
J. Huttunen, T. Väisänen, S. Hellsten, M. Heikkinen, H. Nykänen, H. Jungner, Arto Niskanen, M. Virtanen, O. Lindqvist, Olli Nenonen, P. Martikainen (2002)
Fluxes of CH4, CO2, and N2O in hydroelectric reservoirs Lokka and Porttipahta in the northern boreal zone in FinlandGlobal Biogeochemical Cycles, 16
P. Kankaala, J. Huotari, E. Peltomaa, T. Saloranta, A. Ojala (2006)
Methanotrophic activity in relation to methane efflux and total heterotrophic bacterial production in a stratified, humic, boreal lakeLimnology and Oceanography, 51
Campeau Campeau, Giorgio Giorgio (2014)
Patterns in pCO 2 , pCH 4 and gas exchange across boreal rivers suggest increasing fluvial greenhouse gas emissions under climate changeGlobal Change Biology, 20
R. Striegl, Catherine Michmerhuizen (1998)
Hydrologic influence on methane and carbon dioxide dynamics at two north‐central Minnesota lakesLimnology and Oceanography, 43
Brandt Brandt (2009)
The extend of North American boreal zoneEnvironmental Reviews, 17
R. Wanninkhof (1992)
Relationship between wind speed and gas exchange over the oceanJournal of Geophysical Research, 97
J. Bubier, T. Moore, N. Roulet (1993)
METHANE EMISSIONS FROM WETLANDS IN THE MIDBOREAL REGION OF NORTHERN ONTARIO, CANADA'Ecology, 74
P. Kankaala, J. Huotari, T. Tulonen, A. Ojala (2013)
Lake‐size dependent physical forcing drives carbon dioxide and methane effluxes from lakes in a boreal landscapeLimnology and Oceanography, 58
É. Duchemin, M. Lucotte, R. Canuel (1999)
Comparison of static chamber and thin boundary layer equation methods for measuring greenhouse gas emissions from large water bodiesEnvironmental Science & Technology, 33
G. Yvon‐Durocher, A. Allen, D. Bastviken, R. Conrad, C. Gudasz, A. St-Pierre, Nguyen Thanh-Duc, P. Giorgio (2014)
Methane fluxes show consistent temperature dependence across microbial to ecosystem scalesNature, 507
S. Larsen, T. Andersen, D. Hessen (2011)
Climate change predicted to cause severe increase of organic carbon in lakesGlobal Change Biology, 17
J. Brandt (2009)
The extent of the North American boreal zoneEnvironmental Reviews, 17
D. Bastviken, J. Ejlertsson, I. Sundh, L. Tranvik (2003)
Methane as a source of carbon and energy for lake pelagic food websEcology, 84
Language and Environment for Statistical Computing. R Foundation for Statistical Computing
T. Moore, A. Young, J. Bubier, E. Humphreys, P. Lafleur, N. Roulet (2011)
A Multi-Year Record of Methane Flux at the Mer Bleue Bog, Southern CanadaEcosystems, 14
R. Segers (1998)
Methane production and methane consumption: a review of processes underlying wetland methane fluxesBiogeochemistry, 41
(2009)
Methane. In: Encyclopedia of Inland Waters (ed
C. Roehm, Y. Prairie, P. Giorgio (2009)
The pCO2 dynamics in lakes in the boreal region of northern Québec, CanadaGlobal Biogeochemical Cycles, 23
Lakes are a major component of boreal landscapes, and whereas lake CO2 emissions are recognized as a major component of regional C budgets, there is still much uncertainty associated to lake CH4 fluxes. Here, we present a large‐scale study of the magnitude and regulation of boreal lake summer diffusive CH4 fluxes, and their contribution to total lake carbon (C) emissions, based on in situ measurements of concentration and fluxes of CH4 and CO2 in 224 lakes across a wide range of lake type and environmental gradients in Québec. The diffusive CH4 flux was highly variable (mean 11.6 ± 26.4 SD mg m−2 d−1), and it was positively correlated with temperature and lake nutrient status, and negatively correlated with lake area and colored dissolved organic matter (CDOM). The relationship between CH4 and CO2 concentrations fluxes was weak, suggesting major differences in their respective sources and/or regulation. For example, increasing water temperature leads to higher CH4 flux but does not significantly affect CO2 flux, whereas increasing CDOM concentration leads to higher CO2 flux but lower CH4 flux. CH4 contributed to 8 ± 23% to the total lake C emissions (CH4 + CO2), but 18 ± 25% to the total flux in terms of atmospheric warming potential, expressed as CO2‐equivalents. The incorporation of ebullition and plant‐mediated CH4 fluxes would further increase the importance of lake CH4. The average Q10 of CH4 flux was 3.7, once other covarying factors were accounted for, but this apparent Q10 varied with lake morphometry and was higher for shallow lakes. We conclude that global climate change and the resulting shifts in temperature will strongly influence lake CH4 fluxes across the boreal biome, but these climate effects may be altered by regional patterns in lake morphometry, nutrient status, and browning.
Global Change Biology – Wiley
Published: Mar 1, 2015
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.