Access the full text.
Sign up today, get DeepDyve free for 14 days.
L. Yvan-Charvet, Nan Wang, A. Tall (2010)
Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses.Arteriosclerosis, thrombosis, and vascular biology, 30 2
A. Dávalos, L. Goedeke, Peter Smibert, C. Ramírez, Nikhil Warrier, Ursula Andréo, D. Cirera-Salinas, K. Rayner, U. Suresh, J. Pastor-Pareja, E. Esplugues, E. Fisher, L. Penalva, K. Moore, Y. Suárez, E. Lai, C. Fernández-Hernando (2011)
miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signalingProceedings of the National Academy of Sciences, 108
Tae-Il Jeon, T. Osborne (2012)
SREBPs: metabolic integrators in physiology and metabolismTrends in Endocrinology & Metabolism, 23
E. Boadu, R. Nelson, G. Francis (2012)
ABCA1-dependent mobilization of lysosomal cholesterol requires functional Niemann-Pick C2 but not Niemann-Pick C1 protein.Biochimica et biophysica acta, 1821 3
J. Goldstein, Michael Brown (2009)
The LDL receptor.Arteriosclerosis, thrombosis, and vascular biology, 29 4
F. Maxfield, G. Meer (2010)
Cholesterol, the central lipid of mammalian cells.Current opinion in cell biology, 22 4
J. Nsengimana, N. Samani, A. Hall, A. Balmforth, M. Mangino, N. Yuldasheva, A. Maqbool, P. Braund, P. Burton, D. Bishop, S. Ball, J. Barrett (2007)
Enhanced linkage of a locus on chromosome 2 to premature coronary artery disease in the absence of hypercholesterolemiaEuropean Journal of Human Genetics, 15
J. Reddy, I. Ganley, S. Pfeffer (2006)
Clues to Neuro-Degeneration in Niemann-Pick Type C Disease from Global Gene Expression ProfilingPLoS ONE, 1
V. Olkkonen, Shiqian Li (2013)
Oxysterol-binding proteins: sterol and phosphoinositide sensors coordinating transport, signaling and metabolism.Progress in lipid research, 52 4
Monika Suchanek, R. Hynynen, G. Wohlfahrt, M. Lehto, M. Johansson, Hannu Saarinen, A. Radzikowska, C. Thiele, V. Olkkonen (2007)
The mammalian oxysterol-binding protein-related proteins (ORPs) bind 25-hydroxycholesterol in an evolutionarily conserved pocket.The Biochemical journal, 405 3
K. Rayner, Y. Suárez, A. Dávalos, Saj Parathath, M. Fitzgerald, N. Tamehiro, E. Fisher, K. Moore, C. Fernández-Hernando (2010)
MiR-33 Contributes to the Regulation of Cholesterol HomeostasisScience, 328
Rik Kant, A. Fish, L. Janssen, H. Janssen, Sabine Krom, N. Ho, T. Brummelkamp, J. Carette, Nuno Rocha, J. Neefjes (2013)
Late endosomal transport and tethering are coupled processes controlled by RILP and the cholesterol sensor ORP1LJournal of Cell Science, 126
Hani Najafi-Shoushtari, F. Kristo, Yingxia Li, T. Shioda, D. Cohen, R. Gerszten, A. Näär (2010)
MicroRNA-33 and the SREBP Host Genes Cooperate to Control Cholesterol HomeostasisScience, 328
K. North, Lisa Martin, T. Dyer, A. Comuzzie, Jeff Williams (2003)
HDL cholesterol in females in the Framingham Heart Study is linked to a region of chromosome 2qBMC Genetics, 4
M. Lehto, S. Laitinen, G. Chinetti, M. Johansson, C. Ehnholm, B. Staels, E. Ikonen, V. Olkkonen (2001)
The OSBP-related protein family in humans.Journal of lipid research, 42 8
D. Karunakaran, A. Thrush, M. Nguyen, Laura Richards, M. Geoffrion, R. Singaravelu, Eleni Ramphos, Prakriti Shangari, Mireille Ouimet, J. Pezacki, Kathryn Moore, L. Perisic, L. Maegdefessel, U. Hedin, M. Harper, K. Rayner (2015)
Macrophage mitochondrial energy status regulates cholesterol efflux and is enhanced by anti‐miR33 in atherosclerosisThe FASEB Journal, 29
(2009)
OSBP-related protein 2 is a sterol receptor on lipid droplets that regulates the metabolism of neutral lipids
M. Johansson, M. Lehto, K. Tanhuanpää, T. Cover, V. Olkkonen (2005)
The oxysterol-binding protein homologue ORP1L interacts with Rab7 and alters functional properties of late endocytic compartments.Molecular biology of the cell, 16 12
Cheng Wang, L. JeBailey, N. Ridgway (2002)
Oxysterol-binding-protein (OSBP)-related protein 4 binds 25-hydroxycholesterol and interacts with vimentin intermediate filaments.The Biochemical journal, 361 Pt 3
Tyler Marquart, Ryan Allen, D. Ory, Á. Baldán (2010)
miR-33 links SREBP-2 induction to repression of sterol transportersProceedings of the National Academy of Sciences, 107
Veerle Rottiers, S. Najafi-Shoushtari, F. Kristo, S. Gurumurthy, Lei Zhong, Y. Li, David Cohen, R. Gerszten, N. Bardeesy, R. Mostoslavsky, A. Näär (2011)
MicroRNAs in metabolism and metabolic diseases.Cold Spring Harbor symposia on quantitative biology, 76
M. Lehto, J. Tienari, S. Lehtonen, E. Lehtonen, V. Olkkonen (2003)
Subfamily III of mammalian oxysterol-binding protein (OSBP) homologues: the expression and intracellular localization of ORP3, ORP6, and ORP7Cell and Tissue Research, 315
Xinghui Sun, M. Feinberg (2014)
MicroRNA-management of lipoprotein homeostasis.Circulation research, 115 1
Daoguang Yan, M. Jauhiainen, Reeni Hildebrand, K. Dijk, T. Berkel, C. Ehnholm, M. Eck, V. Olkkonen (2007)
Expression of Human OSBP-Related Protein 1L in Macrophages Enhances Atherosclerotic Lesion Development in LDL Receptor–Deficient MiceArteriosclerosis, Thrombosis, and Vascular Biology, 27
Ming-dong Wang, V. Franklin, M. Sundaram, R. Kiss, K. Ho, M. Gallant, Y. Marcel (2007)
Differential Regulation of ATP Binding Cassette Protein A1 Expression and ApoA-I Lipidation by Niemann-Pick Type C1 in Murine Hepatocytes and Macrophages*Journal of Biological Chemistry, 282
M. Ouimet, K. Moore (2013)
A big role for small RNAs in HDL homeostasisJournal of Lipid Research, 54
I. Gérin, Laure-Alix Clerbaux, Olivier Haumont, N. Lanthier, A. Das, C. Burant, I. Leclercq, O. MacDougald, G. Bommer (2010)
Expression of miR-33 from an SREBP2 Intron Inhibits Cholesterol Export and Fatty Acid Oxidation*The Journal of Biological Chemistry, 285
K. Vickers, Bassem Shoucri, Michael Levin, Han Wu, D. Osei-Hwedieh, Daniel Pearson, F. Collins, P. Sethupathy, A. Remaley (2012)
Abstract 24: MicroRNA-27b Is a Regulatory Hub in Lipid Metabolism and Is Altered in DyslipidemiaArteriosclerosis, Thrombosis, and Vascular Biology
Ryan Allen, Tyler Marquart, Carolyn Albert, F. Suchy, David Wang, M. Ananthanarayanan, D. Ford, Á. Baldán (2012)
miR-33 controls the expression of biliary transporters, and mediates statin- and diet-induced hepatotoxicityEMBO Molecular Medicine, 4
Min Zhang, Jianfeng Wu, Wu-jun Chen, Shi-lin Tang, Z. Mo, Yan-yan Tang, Yuan Li, Jia‐Lin Wang, Xiang-Yu Liu, Juan Peng, Kong Chen, Ping-Ping He, Y. Lv, Xin-ping Ouyang, Feng Yao, Deng-Pei Tang, F. Cayabyab, Da-wei Zhang, Xi-Long Zheng, Guoping Tian, Chao-ke Tang (2014)
MicroRNA-27a/b regulates cellular cholesterol efflux, influx and esterification/hydrolysis in THP-1 macrophages.Atherosclerosis, 234 1
Jeeyun Chung, F. Torta, Kaori Masai, Louise Lucast, H. Czapla, L. Tanner, P. Narayanaswamy, M. Wenk, F. Nakatsu, P. Camilli (2015)
PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER–plasma membrane contactsScience, 349
Marion Weber-Boyvat, Henriikka Kentala, J. Peränen, V. Olkkonen (2015)
Ligand-dependent localization and function of ORP–VAP complexes at membrane contact sitesCellular and Molecular Life Sciences, 72
Objective— Cholesterol homeostasis is fundamental to human health and is, thus, tightly regulated. MicroRNAs exert potent effects on biological pathways, including cholesterol metabolism, by repressing genes with related functions. We reasoned that this mode of pathway regulation could be exploited to identify novel genes involved in cholesterol homeostasis. Approach and Results— Here, we identify oxysterol-binding protein-like 6 ( OSBPL6 ) as a novel target of 2 miRNA hubs regulating cholesterol homeostasis: miR-33 and miR-27b. Characterization of OSBPL6 revealed that it is transcriptionally regulated in macrophages and hepatocytes by liver X receptor and in response to cholesterol loading and in mice and nonhuman primates by Western diet feeding. OSBPL6 encodes the OSBPL-related protein 6 (ORP6), which contains dual membrane- and endoplasmic reticulum–targeting motifs. Subcellular localization studies showed that ORP6 is associated with the endolysosomal network and endoplasmic reticulum, suggesting a role for ORP6 in cholesterol trafficking between these compartments. Accordingly, knockdown of OSBPL6 results in aberrant clustering of endosomes and promotes the accumulation of free cholesterol in these structures, resulting in reduced cholesterol esterification at the endoplasmic reticulum. Conversely, ORP6 overexpression enhances cholesterol trafficking and efflux in macrophages and hepatocytes. Moreover, we show that hepatic expression of OSBPL6 is positively correlated with plasma levels of high-density lipoprotein cholesterol in a cohort of 200 healthy individuals, whereas its expression is reduced in human atherosclerotic plaques. Conclusions— These studies identify ORP6 as a novel regulator of cholesterol trafficking that is part of the miR-33 and miR-27b target gene networks that contribute to the maintenance of cholesterol homeostasis.
Arteriosclerosis, Thrombosis, and Vascular Biology – Wolters Kluwer Health
Published: May 1, 2016
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.