Access the full text.
Sign up today, get DeepDyve free for 14 days.
P. Hoodless, T. Haerry, S. Abdollah, M. Stapleton, M. O’Connor, L. Attisano, J. Wrana (1996)
MADR1, a MAD-Related Protein That Functions in BMP2 Signaling PathwaysCell, 85
E. Kaufmann, Hubert Paul, H. Friedle, Annette Metz, Michaela Scheucher, Joachim Clement, Walter Knochel (1996)
Antagonistic actions of activin A and BMP‐2/4 control dorsal lip‐specific activation of the early response gene XFD‐1′ in Xenopus laevis embryos.The EMBO Journal, 15
J. Li, M. Nichols, S. Chandrasekharan, Y. Xiong, X. Wang (1995)
Transforming growth factor beta activates the promoter of cyclin-dependent kinase inhibitor p15INK4B through an Sp1 consensus site.The Journal of biological chemistry, 270 45
A. Suzuki, C. Chang, J. Yingling, X. Wang, A. Hemmati‐Brivanlou (1997)
Smad5 induces ventral fates in Xenopus embryo.Developmental biology, 184 2
Tongwen Wang, P. Danielson, Bi-Yu Li, P. Shah, Stephen Kim, P. Donahoe (1996)
The p21RAS Farnesyltransferase α Subunit in TGF-β and Activin SignalingScience, 271
M. Kawabata, T. Imamura, K. Miyazono, M. Engel, H. Moses (1995)
Interaction of the Transforming Growth Factor-β Type I Receptor with Farnesyl-protein Transferase-α (*)The Journal of Biological Chemistry, 270
S. Newfeld, A. Mehra, M. Singer, J. Wrana, L. Attisano, W. Gelbart (1997)
Mothers against dpp participates in a DDP/TGF-beta responsive serine-threonine kinase signal transduction cascade.Development, 124 16
Yan Chen, J. Lebrun, W. Vale (1996)
Regulation of transforming growth factor beta- and activin-induced transcription by mammalian Mad proteins.Proceedings of the National Academy of Sciences of the United States of America, 93 23
Y. Henis, A. Moustakas, Herbert Lin, H. Lodish (1994)
The types II and III transforming growth factor-beta receptors form homo-oligomersThe Journal of Cell Biology, 126
S. Souchelnytskyi, K. Tamaki, U. Engström, C. Wernstedt, P. Dijke, C. Heldin (1997)
Phosphorylation of Ser465 and Ser467 in the C Terminus of Smad2 Mediates Interaction with Smad4 and Is Required for Transforming Growth Factor-β Signaling*The Journal of Biological Chemistry, 272
J. Pietenpol, R. Stein, E. Moran, P. Yaciuk, R. Schlegel, R. Lyons, M. Pittelkow, K. Münger, P. Howley, H. Moses (1990)
TGF-β1 inhibition of c-myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domainsCell, 61
C. Rodríguez, F. Chen, R. Weinberg, H. Lodish (1995)
Cooperative Binding of Transforming Growth Factor (TGF)-β2 to the Types I and II TGF-β Receptors (*)The Journal of Biological Chemistry, 270
Atsushi Suzuki, Naoto Ueno, A. Hemmati‐Brivanlou (1997)
Xenopus msx1 mediates epidermal induction and neural inhibition by BMP4.Development, 124 16
S. Abdollah, M. Macías-Silva, T. Tsukazaki, H. Hayashi, L. Attisano, J. Wrana (1997)
TβRI Phosphorylation of Smad2 on Ser465 and Ser467 Is Required for Smad2-Smad4 Complex Formation and Signaling*The Journal of Biological Chemistry, 272
T. Imamura, M. Takase, A. Nishihara, E. Oeda, J. Hanai, M. Kawabata, K. Miyazono (1997)
Smad6 inhibits signalling by the TGF-β superfamilyNature, 389
(1997)
Smad6 is an inhibitor in the TGF-b superfamily signalling
A. Hata, R. Lo, D. Wotton, G. Lagna, J. Massagué (1997)
Mutations increasing autoinhibition inactivate tumour suppressors Smad2 and Smad4Nature, 388
Fang Liu, F. Ventura, J. Doody, J. Massagué (1995)
Human type II receptor for bone morphogenic proteins (BMPs): extension of the two-kinase receptor model to the BMPsMolecular and Cellular Biology, 15
K. Arora, Heng Dai, S. Kazuko, J. Jamal, M. O’Connor, A. Letsou, R. Warrior (1995)
The drosophila schnurri gene acts in the Dpp/TGFβ signaling pathway and encodes a transcription factor homologous to the human MBP familyCell, 81
Seong-Jin Kim, P. Angel, R. Lafyatis, K. Hattori, Kyung Kim, M. Sporn, M. Karin, A. Roberts (1990)
Autoinduction of transforming growth factor beta 1 is mediated by the AP-1 complexMolecular and Cellular Biology, 10
T. Watanabe, M. Suzuki, Y. Omori, H. Hishigaki, M. Horie, N. Kanemoto, T. Fujiwara, Y. Nakamura, E. Takahashi (1997)
Cloning and characterization of a novel member of the human Mad gene family (MADH6).Genomics, 42 3
T. McCaffrey, S. Consigli, B. Du, D Falcone, T. Sanborn, A. Spokojny, H. Bush (1995)
Decreased type II/type I TGF-beta receptor ratio in cells derived from human atherosclerotic lesions. Conversion from an antiproliferative to profibrotic response to TGF-beta1.The Journal of clinical investigation, 96 6
Ruey-Hwa Chen, P. Miettinen, E. Maruoka, L. Choy, R. Derynck (1995)
A WD-domain protein that is associated with and phosphorylated by the type II TGF-β receptorNature, 377
F. Ventura, Fang Liu, J. Doody, J. Massagué (1996)
Interaction of Transforming Growth Factor-β Receptor I with Farnesyl-protein Transferase-α in Yeast and Mammalian Cells*The Journal of Biological Chemistry, 271
한평림 (1996)
A Transcriptional Partner for MAD Proteins in TGF - b Signalling, 16
C. Savage, P. Das, A. Finelli, Scott Townsend, Chi-Yu Sun, S. Baird, R. Padgett (1996)
Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor beta pathway components.Proceedings of the National Academy of Sciences of the United States of America, 93 2
I. Mucsi, K. Skorecki, H. Goldberg (1996)
Extracellular Signal-regulated Kinase and the Small GTP-binding Protein, Rac, Contribute to the Effects of Transforming Growth Factor-β1 on Gene Expression*The Journal of Biological Chemistry, 271
Xin-Hua Feng, R. Derynck (1997)
A kinase subdomain of transforming growth factor‐β (TGF‐β) type I receptor determines the TGF‐β intracellular signaling specificityThe EMBO Journal, 16
K. Tsuneizumi, T. Nakayama, Yuko Kamoshida, T. Kornberg, J. Christian, T. Tabata (1997)
Daughters against dpp modulates dpp organizing activity in Drosophila wing developmentNature, 389
A. Atfi, S. Djelloul, E. Chastre, R. Davis, C. Gespach (1997)
Evidence for a Role of Rho-like GTPases and Stress-activated Protein Kinase/c-Jun N-terminal Kinase (SAPK/JNK) in Transforming Growth Factor β-mediated Signaling*The Journal of Biological Chemistry, 272
G. Hannon, D. Beach (1994)
p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest.Nature, 371 6494
M. Charng, P. Kinnunen, J. Hawker, T. Brand, M. Schneider (1996)
FKBP-12 Recognition Is Dispensable For Signal Generation by Type I Transforming Growth Factor-β Receptors*The Journal of Biological Chemistry, 271
R. Wieser, J. Wrana, J. Massagué (1995)
GS domain mutations that constitutively activate T beta R‐I, the downstream signaling component in the TGF‐beta receptor complex.The EMBO Journal, 14
A. Nakao, M. Afrakhte, A. Morn, T. Nakayama, J. Christian, R. Heuchel, S. Itoh, M. Kawabata, N. Heldin, C. Heldin, P. Dijke (1997)
Identification of Smad7, a TGFβ-inducible antagonist of TGF-β signallingNature, 389
J. Massaous, A. Hata (1997)
TGF-β signalling through the Smad pathwayTrends in Cell Biology, 7
K. Galaktionov, Xiaocun Chen, D. Beach (1996)
Cdc25 cell-cycle phosphatase as a target of c-mycNature, 382
A. Nakao, T. Imamura, S. Souchelnytskyi, M. Kawabata, A. Ishisaki, E. Oeda, K. Tamaki, J. Hanai, C. Heldin, K. Miyazono, P. Dijke (1997)
TGF‐β receptor‐mediated signalling through Smad2, Smad3 and Smad4The EMBO Journal, 16
F. Weis-Garcia, J. Massagué (1996)
Complementation between kinase‐defective and activation‐defective TGF‐beta receptors reveals a novel form of receptor cooperativity essential for signaling.The EMBO Journal, 15
S. Souchelnytskyi, P. Dijke, K. Miyazono, C. Heldin (1996)
Phosphorylation of Ser165 in TGF‐β type I receptor modulates TGF‐β1‐induced cellular responsesThe EMBO Journal, 16
Jaeseob Kim, Kirby Johnson, Hui-ju Chen, S. Carroll, A. Laughon (1997)
Drosophila Mad binds to DNA and directly mediates activation of vestigial by DecapentaplegicNature, 388
S. Markowitz, Jing Wang, L. Myeroff, R. Parsons, L. Sun, J. Lutterbaugh, R. Fan, E. Zborowska, K. Kinzler, B. Vogelstein, B. Vogelstein, M. Brattain, J. Willson (1995)
Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability.Science, 268 5215
L Attisano, JL Wrana, E Montalvo, J Massagué (1996)
Activation of signalling by the activin receptor complex.Mol. Cell. Biol., 16
G. Hannon, D. Beach (1994)
pl5INK4B is a potentia| effector of TGF-β-induced cell cycle arrestNature, 371
K. Luo, H. Lodish (1997)
Positive and negative regulation of type II TGF‐β receptor signal transduction by autophosphorylation on multiple serine residuesThe EMBO Journal, 16
S Souchelnytskyi (1997)
Phosphorylation of Ser465 and Ser467 in the C-terminus of Smad2 mediates interaction with Smad4 and is required for TGF- β signalling.J. Biol. Chem., 272
Paul Wilson, Giorgio Lagna, Atsushi Suzuki, A. Hemmati‐Brivanlou (1997)
Concentration-dependent patterning of the Xenopus ectoderm by BMP4 and its signal transducer Smad1.Development, 124 16
G. Riggins, K. Kinzler, B. Vogelstein, S. Thiagalingam (1997)
Frequency of Smad gene mutations in human cancers.Cancer research, 57 13
S. Newfeld, E. Chartoff, E. Chartoff, J. Graff, D. Melton, W. Gelbart (1996)
Mothers against dpp encodes a conserved cytoplasmic protein required in DPP/TGF-beta responsive cells.Development, 122 7
N. Grieder, Denise Nellen, Richard Burke, K. Basler, M. Affolter (1995)
schnurri is required for drosophila Dpp signaling and encodes a zinc finger protein similar to the mammalian transcription factor PRDII-BF1Cell, 81
J. Cárcamo, Frances Weis, F. Ventura, R. Wieser, J. Wrana, L. Attisano, J. Massagué (1994)
Type I receptors specify growth-inhibitory and transcriptional responses to transforming growth factor beta and activinMolecular and Cellular Biology, 14
R. Frey, K. Mulder (1997)
Involvement of Extracellular Signal-regulated Kinase 2 and Stress-activated Protein Kinase/Jun N-Terminal Kinase Activation by Transforming Growth Factor β in the Negative Growth Control of Breast Cancer CellsCancer Research, 57
M. Hartsough, R. Frey, P. Zipfel, A. Buard, S. Cook, F. McCormick, K. Mulder (1996)
Altered Transforming Growth Factor β Signaling in Epithelial Cells when Ras Activation Is Blocked*The Journal of Biological Chemistry, 271
S. Hahn, M. Schutte, A. Hoque, C. Moskaluk, L. Costa, E. Rozenblum, Craig Weinstein, Aryeh Fischer, C. Yeo, R. Hruban, S. Kern (1996)
DPC4, A Candidate Tumor Suppressor Gene at Human Chromosome 18q21.1Science, 271
Yigong Shi, A. Hata, R. Lo, J. Massagué, N. Pavletich (1997)
A structural basis for mutational inactivation of the tumour suppressor Smad4Nature, 388
G. Lagna, A. Hata, A. Hemmati‐Brivanlou, J. Massagué (1996)
Partnership between DPC4 and SMAD proteins in TGF-β signalling pathwaysNature, 383
T. Nohno, T. Ishikawa, T. Saito, K. Hosokawa, S. Noji, D. Wolsing, J. Rosenbaum (1995)
Identification of a Human Type II Receptor for Bone Morphogenetic Protein-4 That Forms Differential Heteromeric Complexes with Bone Morphogenetic Protein Type I Receptors (*)The Journal of Biological Chemistry, 270
Xin Chen, E. Weisberg, V. Fridmacher, Minoru Watanabe, Grace Naco, M. Whitman (1997)
Smad4 and FAST-1 in the assembly of activin-responsive factorNature, 389
G. Thomsen (1996)
Xenopus mothers against decapentaplegic is an embryonic ventralizing agent that acts downstream of the BMP-2/4 receptor.Development, 122 8
M. Schutte, R. Hruban, L. Hedrick, Kathleen Cho, G. Nadasdy, Craig Weinstein, G. Bova, W. Isaacs, P. Cairns, Homaira Nawroz, D. Sidransky, R. Casero, P. Meltzer, S. Hahn, S. Kern (1996)
DPC4 gene in various tumor types.Cancer research, 56 11
Serhiy Souchelnytskyil, P. Dijke, K. Miyazono, C. Heldin (1996)
Phosphorylation of Ser165 in TGF‐beta type I receptor modulates TGF‐beta1‐induced cellular responses.The EMBO Journal, 15
M. Caestecker, P. Hemmati, Sarit Larisch-Bloch, Ravi Ajmera, A. Roberts, R. Lechleider (1997)
Characterization of Functional Domains within Smad4/DPC4*The Journal of Biological Chemistry, 272
Ruey-Hwa Chen, R. Ebner, R. Derynck (1993)
Inactivation of the type II receptor reveals two receptor pathways for the diverse TGF-beta activities.Science, 260 5112
Tongwen Wang, Bi-Yu Li, P. Danielson, P. Shah, S. Rockwell, R. Lechleider, Jennifer Martin, T. Manganaro, P. Donahoe (1996)
The Immunophilin FKBP12 Functions as a Common Inhibitor of the TGFβ Family Type I ReceptorsCell, 86
B. Rosenzweig, Takeshi IMAMURAt, T. Okadome, G. Cox, Hidetoshi YAMASHITAt, Pieter Ten, DIJKEt, C. Heldin, Kohei, Miyazono (1995)
Cloning and characterization of a human type II receptor for bone morphogenetic proteins.Proceedings of the National Academy of Sciences of the United States of America, 92 17
J. Topper, Jiexing Cai, Yubin Qiu, K. Anderson, Yong-Yao Xu, J. Deeds, Roslyn Feeley, C. Gimeno, E. Woolf, Olga Tayber, Gail Mays, B. Sampson, F. Schoen, M. Gimbrone, D. Falb (1997)
Vascular MADs: two novel MAD-related genes selectively inducible by flow in human vascular endothelium.Proceedings of the National Academy of Sciences of the United States of America, 94 17
V. Gawantka, Hajo Delius, K. Hirschfeld, C. Blumenstock, Christof Niehrs (1995)
Antagonizing the Spemann organizer: role of the homeobox gene Xvent‐1.The EMBO Journal, 14
Ying Zhang, Xin-Hua Feng, Rui-yun Wu, R. Derynck (1996)
Receptor-associated Mad homologues synergize as effectors of the TGF-β responseNature, 383
Kolja Eppert, S. Scherer, H. Ozçelik, R. Pirone, P. Hoodless, Hyeja Kim, L. Tsui, B. Bapat, S. Gallinger, I. Andrulis, G. Thomsen, J. Wrana, L. Attisano (1996)
MADR2 Maps to 18q21 and Encodes a TGFβ–Regulated MAD–Related Protein That Is Functionally Mutated in Colorectal CarcinomaCell, 86
J. Graff, A. Bansal, D. Melton (1996)
Xenopus Mad Proteins Transduce Distinct Subsets of Signals for the TGFβ SuperfamilyCell, 85
Takanori Nakamura, Kishiko Sugino, N. Kurosawa, M. Sawai, K. Takio, Y. Eto, S. Iwashita, Masami Muramatsu, K. Titani, H. Sugino (1992)
Isolation and characterization of activin receptor from mouse embryonal carcinoma cells. Identification of its serine/threonine/tyrosine protein kinase activity.The Journal of biological chemistry, 267 26
J. Baker, R. Harland (1996)
A novel mesoderm inducer, Madr2, functions in the activin signal transduction pathway.Genes & development, 10 15
J. Sekelsky, S. Newfeld, L. Raftery, E. Chartoff, W. Gelbart (1995)
Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster.Genetics, 139 3
M. Kawabata, A. Chytil, H. Moses (1995)
Cloning of a Novel Type II Serine/Threonine Kinase Receptor through Interaction with the Type I Transforming Growth Factor-β Receptor (*)The Journal of Biological Chemistry, 270
S. Lawler, Xin-Hua Feng, Ruey-Hwa Chen, E. Maruoka, C. Turck, I. Griswold-Prenner, R. Derynck (1997)
The Type II Transforming Growth Factor-β Receptor Autophosphorylates Not Only on Serine and Threonine but Also on Tyrosine Residues*The Journal of Biological Chemistry, 272
(1995)
Copyright � 1996, American Society for Microbiology Activation of Signalling by the Activin Receptor Complex
Volker Wiersdorff, T. Lecuit, S. Cohen, M. Mlodzik (1996)
Mad acts downstream of Dpp receptors, revealing a differential requirement for dpp signaling in initiation and propagation of morphogenesis in the Drosophila eye.Development, 122 7
S. Willis, C. Zimmerman, L. Li, L. Mathews (1996)
Formation and activation by phosphorylation of activin receptor complexes.Molecular endocrinology, 10 4
M. Macías-Silva, S. Abdollah, P. Hoodless, R. Pirone, L. Attisano, J. Wrana (1996)
MADR2 Is a Substrate of the TGFβ Receptor and Its Phosphorylation Is Required for Nuclear Accumulation and SignalingCell, 87
Ruey-Hwa Chen, Rik Derynck (1994)
Homomeric interactions between type II transforming growth factor-beta receptors.The Journal of biological chemistry, 269 36
Fang Liu, A. Hata, J. Baker, J. Doody, J. Cárcamo, R. Harland, J. Massagué (1996)
A human Mad protein acting as a BMP-regulated transcriptional activatorNature, 381
W. Cui, D. Fowlis, S. Bryson, E. Duffie, H. Ireland, A. Balmain, R. Akhurst (1996)
TGFβ1 Inhibits the Formation of Benign Skin Tumors, but Enhances Progression to Invasive Spindle Carcinomas in Transgenic MiceCell, 86
G. Riggins, S. Thiagalingam, E. Rozenblum, Craig Weinstein, S. Kern, S. Hamilton, J. Willson, S. Markowitz, K. Kinzler, B. Vogelstein (1996)
Mad-related genes in the humanNature Genetics, 13
Tetsuro Watabe, Sam Kim, Albert Candia, Ute Rothb, C. Hashimoto, Kunio Inoue, K. Cho (1995)
Molecular mechanisms of Spemann's organizer formation: conserved growth factor synergy between Xenopus and mouse.Genes & development, 9 24
Raj Ladher, T. Mohun, James Smith, Alison Snape (1996)
Xom: a Xenopus homeobox gene that mediates the early effects of BMP-4.Development, 122 8
J. Wrana, L. Attisano, R. Wieser, F. Ventura, J. Massagué (1994)
Mechanism of activation of the TGF-β receptorNature, 370
K. Reddy, M. Karode, and Harmony, P. Howe (1996)
Interaction of transforming growth factor beta receptors with apolipoprotein J/clusterin.Biochemistry, 35 1
J. Yingling, P. Das, C. Savage, Ming Zhang, R. Padgett, Xiao-Fan Wang (1996)
Mammalian dwarfins are phosphorylated in response to transforming growth factor beta and are implicated in control of cell growth.Proceedings of the National Academy of Sciences of the United States of America, 93 17
H. Yamashita, P. Dijke, P. Franzén, K. Miyazono, C. Heldin (1994)
Formation of hetero-oligomeric complexes of type I and type II receptors for transforming growth factor-beta.The Journal of biological chemistry, 269 31
R. Lechleider, M. Caestecker, A. Dehejia, M. Polymeropoulos, A. Roberts (1996)
Serine Phosphorylation, Chromosomal Localization, and Transforming Growth Factor-β Signal Transduction by Human bsp-1*The Journal of Biological Chemistry, 271
L. Raftery, V. Twombly, K. Wharton, W. Gelbart (1995)
Genetic screens to identify elements of the decapentaplegic signaling pathway in Drosophila.Genetics, 139 1
Antonio Lavarone, J. Massagué (1997)
Repression of the CDK activator Cdc25A and cell-cycle arrest by cytokine TGF-β in cells lacking the CDK inhibitor p15Nature, 387
Ying Zhang, T. Musci, R. Derynck (1997)
The tumor suppressor Smad4/DPC 4 as a central mediator of Smad functionCurrent Biology, 7
Xin Chen, M. Rubock, M. Whitman (1996)
A transcriptional partner for MAD proteins in TGF-β signallingNature, 383
M. Kretzschmar, Fang Liu, Fang Liu, A. Hata, J. Doody, J. Massagué (1997)
The TGF-beta family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase.Genes & development, 11 8
H. Hayashi, S. Abdollah, Yubin Qiu, Jie Cai, Yong-Yao Xu, B. Grinnell, M. Richardson, J. Topper, M. Gimbrone, J. Wrana, D. Falb (1997)
The MAD-Related Protein Smad7 Associates with the TGFβ Receptor and Functions as an Antagonist of TGFβ SignalingCell, 89
S. Markowitz, A. Roberts (1996)
Tumor suppressor activity of the TGF-β pathway in human cancersCytokine & Growth Factor Reviews, 7
Ye-Guang Chen, Fang Liu, J. Massagué (1997)
Mechanism of TGFβ receptor inhibition by FKBP12The EMBO Journal, 16
J. Ihle (1996)
STATs: Signal Transducers and Activators of TranscriptionCell, 84
Xin-Hua Feng, R. Derynck (1996)
Ligand-independent Activation of Transforming Growth Factor (TGF) β Signaling Pathways by Heteromeric Cytoplasmic Domains of TGF-β Receptors*The Journal of Biological Chemistry, 271
M. Datto, Yong Yu, Xiao-Fan Wang (1995)
Functional Analysis of the Transforming Growth Factor βResponsive Elements in the WAF1/Cip1/p21 Promoter (*)The Journal of Biological Chemistry, 270
Rui-yun Wu, Ying Zhang, XIN-HUA Feng, Rik Derynck (1997)
Heteromeric and homomeric interactions correlate with signaling activity and functional cooperativity of Smad3 and Smad4/DPC4Molecular and Cellular Biology, 17
R. Padgett, C. Savage, P. Das (1997)
Genetic and biochemical analysis of TGFβ signal transductionCytokine & Growth Factor Reviews, 8
K. Yamaguchi, K. Shirakabe, H. Shibuya, K. Irie, I. Oishi, N. Ueno, T. Taniguchi, E. Nishida, Kunihiro Matsumoto (1995)
Identification of a Member of the MAPKKK Family as a Potential Mediator of TGF-β Signal TransductionScience, 270
K. Luo, H. Lodish (1996)
Signaling by chimeric erythropoietin‐TGF‐beta receptors: homodimerization of the cytoplasmic domain of the type I TGF‐beta receptor and heterodimerization with the type II receptor are both required for intracellular signal transduction.The EMBO Journal, 15
M. Kretzschmar, J. Doody, J. Massagu (1997)
Opposing BMP and EGF signalling pathways converge on the TGF-β family mediator Smad1Nature, 389
M. Keeton, S. Curriden, A. Zonneveld, D. Loskutoff (1991)
Identification of regulatory sequences in the type 1 plasminogen activator inhibitor gene responsive to transforming growth factor beta.The Journal of biological chemistry, 266 34
S. Sankar, N. Mahooti-Brooks, L. Bensen, T. McCarthy, M. Centrella, J. Madri (1996)
Modulation of transforming growth factor beta receptor levels on microvascular endothelial cells during in vitro angiogenesis.The Journal of clinical investigation, 97 6
G. Meersseman, K. Verschueren, L. Nelles, C. Blumenstock, H. Kraft, G. Wuytens, J. Remacle, C. Kozak, P. Tylzanowski, C. Niehrs, D. Huylebroeck (1997)
The C-terminal domain of Mad-like signal transducers is sufficient for biological activity in the Xenopus embryo and transcriptional activationMechanisms of Development, 61
The recent identification of the SMAD family of signal transducer proteins has unravelled the mechanisms by which transforming growth factor-β (TGF-β) signals from the cell membrane to the nucleus. Pathway-restricted SMADs are phosphorylated by specific cell-surface receptors that have serine/threonine kinase activity, then they oligomerize with the common mediator Smad4 and translocate to the nucleus where they direct transcription to effect the cell's response to TGF-β. Inhibitory SMADs have been identified that block the activation of these pathway-restricted SMADs.
Nature – Springer Journals
Published: Dec 4, 1997
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.