Access the full text.
Sign up today, get DeepDyve free for 14 days.
Y. Kerdiles, E. Stone, Daniel Beisner, Maureen McGargill, Irene Ch’en, C. Stockmann, C. Katayama, S. Hedrick (2010)
Foxo transcription factors control regulatory T cell development and function.Immunity, 33 6
J. Loosdregt, D. Brunen, V. Fleskens, C. Pals, E. Lam, P. Coffer (2011)
Rapid Temporal Control of Foxp3 Protein Degradation by Sirtuin-1PLoS ONE, 6
Barneda-Zahonero (2012)
Histone deacetylases and cancerMol Oncol, 6
Nicole Boucheron, Roland Tschismarov, L. Goeschl, M. Moser, S. Lagger, S. Sakaguchi, Mircea Winter, Florian Lenz, D. Vitko, F. Breitwieser, L. Müller, Hammad Hassan, K. Bennett, J. Colinge, W. Schreiner, Takeshi Egawa, I. Taniuchi, P. Matthias, C. Seiser, W. Ellmeier (2014)
CD4+ T cell lineage integrity is controlled by the histone deacetylases HDAC1 and HDAC2Nature immunology, 15
M. Mihaylova, Debbie Vasquez, Kim Ravnskjaer, Pierre-Damien Denechaud, R. Yu, J. Alvarez, M. Downes, R. Evans, M. Montminy, R. Shaw (2011)
Class IIa Histone Deacetylases Are Hormone-Activated Regulators of FOXO and Mammalian Glucose HomeostasisCell, 145
M. Fraga, E. Ballestar, A. Villar‐Garea, M. Boix-Chornet, J. Espada, G. Schotta, T. Bonaldi, Claire Haydon, S. Ropero, K. Petrie, N. Iyer, A. Pérez‐Rosado, E. Calvo, J. López, A. Cano, M. Calasanz, D. Colomer, M. Piris, Natalie Ahn, N. Ahn, A. Imhof, C. Caldas, T. Jenuwein, M. Esteller (2005)
Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancerNature Genetics, 37
M. Kuo, C. Allis (1998)
Roles of histone acetyltransferases and deacetylases in gene regulationBioEssays, 20
T. Gajewski, H. Schreiber, yang-xin fu (2013)
Innate and adaptive immune cells in the tumor microenvironmentNature Immunology, 14
(2016)
2701–15
(2009)
Tran - scription factors RUNX 1 and RUNX 3 in the induction and suppressive function of Foxp 3 1 inducible regulatory T cells
Hitomi Matsuzaki, H. Daitoku, M. Hatta, Hisanori Aoyama, Kenji Yoshimochi, A. Fukamizu (2005)
Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation.Proceedings of the National Academy of Sciences of the United States of America, 102 32
V. Trouet, Jan Esper, Nicholas Graham, Andy Baker, J. Scourse, David, C. Frank (2002)
Supporting Online Material
U. Beier, Liqing Wang, R. Han, T. Akimova, Yujie Liu, W. Hancock (2012)
Histone Deacetylases 6 and 9 and Sirtuin-1 Control Foxp3+ Regulatory T Cell Function Through Shared and Isoform-Specific MechanismsScience Signaling, 5
M. Kroesen, P. Gielen, Ingrid Brok, Inna Armandari, P. Hoogerbrugge, G. Adema (2014)
HDAC inhibitors and immunotherapy; a double edged sword?Oncotarget, 5
U. Beier, T. Akimova, Yujie Liu, Liqing Wang, W. Hancock (2011)
Histone/protein deacetylases control Foxp3 expression and the heat shock response of T-regulatory cells.Current opinion in immunology, 23 5
J. Loosdregt, Y. Vercoulen, T. Guichelaar, Y. Gent, J. Beekman, O. Beekum, A. Brenkman, D. Hijnen, T. Mutis, E. Kalkhoven, B. Prakken, P. Coffer (2010)
Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization.Blood, 115 5
F. Hodi, M. Butler, D. Oble, M. Seiden, M. Seiden, F. Haluska, A. Kruse, Suzanne Macrae, Marybeth Nelson, C. Canning, I. Lowy, A. Korman, D. Lautz, Sara Russell, M. Jaklitsch, N. Ramaiya, Teresa Chen, D. Neuberg, J. Allison, M. Mihm, G. Dranoff (2008)
Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patientsProceedings of the National Academy of Sciences, 105
T. Akimova, Haiyan Xiao, Yujie Liu, T. Bhatti, Jing Jiao, E. Eruslanov, S. Singhal, Liqing Wang, R. Han, Keziah Zacharia, W. Hancock, U. Beier (2014)
Targeting Sirtuin-1 Alleviates Experimental Autoimmune Colitis by Induction of Foxp3+ T-Regulatory CellsMucosal immunology, 7
Yujie Liu, Liqing Wang, J. Predina, R. Han, U. Beier, Liang-Chuan Wang, V. Kapoor, T. Bhatti, T. Akimova, S. Singhal, Paul Brindle, P. Cole, S. Albelda, W. Hancock (2012)
Inhibition of p300 impairs Foxp3+ T-regulatory cell function and promotes anti-tumor immunityNature medicine, 19
T. Akimova, M. Levine, U. Beier, W. Hancock (2016)
Standardization, Evaluation, and Area-Under-Curve Analysis of Human and Murine Treg Suppressive Function.Methods in molecular biology, 1371
M Glozak, E. Seto (2007)
Histone deacetylases and cancerOncogene, 26
Ken Lin, F. Guarnieri, K. Staveley-O’Carroll, H. Levitsky, J. August, D. Pardoll, T. Wu (1996)
Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen.Cancer research, 56 1
Liqing Wang, E. Zoeten, M. Greene, W. Hancock (2009)
Immunomodulatory effects of deacetylase inhibitors: therapeutic targeting of FOXP3+ regulatory T cellsNature Reviews Drug Discovery, 8
Rajan Thomas, H. Sai, A. Wells (2012)
Conserved Intergenic Elements and DNA Methylation Cooperate to Regulate Transcription at the il17 Locus*The Journal of Biological Chemistry, 287
W. Ouyang, W. Liao, Chong Luo, N. Yin, M. Huse, V. Myoungjoo, Kim, Min Peng, Pamela Chan, Q. Ma, Yifan Mo, D. Meijer, K. Zhao, Alexander, Y. Rudensky, G. Atwal, Michael Zhang, Ming Li (2013)
Novel Foxo 1 – dependent transcriptional programs control T reg cell function
E. Zoeten, Liqing Wang, H. Sai, W. Dillmann, W. Hancock (2010)
Inhibition of HDAC9 increases T regulatory cell function and prevents colitis in mice.Gastroenterology, 138 2
S. Tsai, E. Seto (2002)
Regulation of Histone Deacetylase 2 by Protein Kinase CK2*The Journal of Biological Chemistry, 277
Hori (2003)
Control of regulatory T cell development by the transcription factor Foxp3Science, 299
J. Fontenot, M. Gavin, A. Rudensky (2003)
Foxp3 programs the development and function of CD4+CD25+ regulatory T cellsNature Immunology, 4
J. San-Miguel, V. Hungria, S. Yoon, M. Beksaç, M. Dimopoulos, A. Elghandour, W. Jędrzejczak, A. Günther, T. Nakorn, N. Siritanaratkul, P. Corradini, S. Chuncharunee, Je-Jung Lee, R. Schlossman, T. Shelekhova, K. Yong, D. Tan, T. Numbenjapon, J. Cavenagh, J. Hou, R. LeBlanc, H. Nahi, L. Qiu, H. Salwender, S. Pulini, P. Moreau, K. Warzocha, D. White, J. Bladé, Wenming Chen, J. Rubia, P. Gimsing, S. Lonial, J. Kaufman, E. Ocio, Ljupco Veskovski, S. Sohn, Ming-Chung Wang, Jae Lee, H. Einsele, M. Sopala, C. Corrado, B. Bengoudifa, F. Binlich, P. Richardson (2014)
Panobinostat plus bortezomib and dexamethasone versus placebo plus bortezomib and dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma: a multicentre, randomised, double-blind phase 3 trial.The Lancet. Oncology, 15 11
Nicole Boucheron, Roland Tschismarov, L. Goeschl, M. Moser, S. Lagger, S. Sakaguchi, Mircea Winter, Florian Lenz, D. Vitko, F. Breitwieser, L. Müller, Hammad Hassan, K. Bennett, J. Colinge, W. Schreiner, Takeshi Egawa, I. Taniuchi, P. Matthias, C. Seiser, W. Ellmeier (2014)
Corrigendum: CD4+ T cell lineage integrity is controlled by the histone deacetylases HDAC1 and HDAC2Nature Immunology, 15
A. Haas, Jing Sun, A. Vachani, A. Wallace, M. Silverberg, V. Kapoor, S. Albelda (2006)
Cycloxygenase-2 Inhibition Augments the Efficacy of a Cancer VaccineClinical Cancer Research, 12
G. Eom, Y. Nam, J. Oh, N. Choe, Hyun-Ki Min, E. Yoo, Gaeun Kang, V. Nguyen, J. Min, Jong-Keun Kim, In-kyu Lee, R. Bassel-Duby, E. Olson, W. Park, H. Kook (2014)
Regulation of Acetylation of Histone Deacetylase 2 by p300/CBP-Associated Factor/Histone Deacetylase 5 in the Development of Cardiac HypertrophyCirculation Research, 114
(2015)
Clinical blockade of PD1 and LAG3 [mdash] potential mechanisms of action
Yujie Liu, Liqing Wang, R. Han, U. Beier, W. Hancock (2012)
Two Lysines in the Forkhead Domain of Foxp3 Are Key to T Regulatory Cell FunctionPLoS ONE, 7
E. Zoeten, Liqing Wang, Kyle Butler, U. Beier, T. Akimova, H. Sai, J. Bradner, Ralph Mazitschek, A. Kozikowski, P. Matthias, W. Hancock (2011)
Histone Deacetylase 6 and Heat Shock Protein 90 Control the Functions of Foxp3+ T-Regulatory CellsMolecular and Cellular Biology, 31
L. Marek, A. Hamacher, F. Hansen, K. Kuna, H. Gohlke, M. Kassack, T. Kurz (2013)
Histone deacetylase (HDAC) inhibitors with a novel connecting unit linker region reveal a selectivity profile for HDAC4 and HDAC5 with improved activity against chemoresistant cancer cells.Journal of medicinal chemistry, 56 2
W. Ouyang, Omar Beckett, Q. Ma, J. Paik, R. DePinho, Ming Li (2010)
Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cellsNature Immunology, 11
R. Tao, E. Zoeten, Engin Özkaynak, Chunxia Chen, Liqing Wang, P. Porrett, Bin Li, L. Turka, E. Olson, M. Greene, A. Wells, W. Hancock (2007)
Deacetylase inhibition promotes the generation and function of regulatory T cellsNature Medicine, 13
M. Feuerer, J. Hill, D. Mathis, C. Benoist (2009)
Foxp3+ regulatory T cells: differentiation, specification, subphenotypesNature Immunology, 10
L. Nguyen, P. Ohashi (2014)
Clinical blockade of PD1 and LAG3 — potential mechanisms of actionNature Reviews Immunology, 15
S. Klunker, M. Chong, Pierre-Yves Mantel, Ó. Palomares, C. Bassin, M. Ziegler, B. Rückert, F. Meiler, M. Akdiş, D. Littman, C. Akdis (2009)
Transcription factors RUNX1 and RUNX3 in the induction and suppressive function of Foxp3+ inducible regulatory T cellsThe Journal of Experimental Medicine, 206
Fernando Cruz-Guilloty, M. Pipkin, I. Djuretic, D. Levanon, J. Lotem, M. Lichtenheld, Y. Groner, A. Rao (2009)
Runx3 and T-box proteins cooperate to establish the transcriptional program of effector CTLsThe Journal of Experimental Medicine, 206
A. Kitoh, M. Ono, Y. Naoe, N. Ohkura, Tomoyuki Yamaguchi, H. Yaguchi, I. Kitabayashi, T. Tsukada, T. Nomura, Y. Miyachi, I. Taniuchi, S. Sakaguchi (2009)
Indispensable role of the Runx1-Cbfbeta transcription complex for in vivo-suppressive function of FoxP3+ regulatory T cells.Immunity, 31 4
A. West, R. Johnstone (2014)
New and emerging HDAC inhibitors for cancer treatment.The Journal of clinical investigation, 124 1
T. Akimova, Guanghui Ge, T. Golovina, T. Mikheeva, Liqing Wang, J. Riley, W. Hancock (2010)
Histone/protein deacetylase inhibitors increase suppressive functions of human FOXP3+ Tregs.Clinical immunology, 136 3
J. Loosdregt, P. Coffer (2014)
Post-translational modification networks regulating FOXP3 function.Trends in immunology, 35 8
Shurong Chang, T. McKinsey, Chun-li Zhang, J. Richardson, Joseph Hill, E. Olson (2004)
Histone Deacetylases 5 and 9 Govern Responsiveness of the Heart to a Subset of Stress Signals and Play Redundant Roles in Heart DevelopmentMolecular and Cellular Biology, 24
R. Tao, Liqing Wang, R. Han, Tao Wang, Qunrui Ye, T. Honjo, T. Murphy, K. Murphy, W. Hancock (2005)
Differential Effects of B and T Lymphocyte Attenuator and Programmed Death-1 on Acceptance of Partially versus Fully MHC-Mismatched Cardiac Allografts1The Journal of Immunology, 175
H. Nishikawa, S. Sakaguchi (2010)
Regulatory T cells in tumor immunityInternational Journal of Cancer, 127
D. Hanahan, R. Weinberg (2011)
Hallmarks of Cancer: The Next GenerationCell, 144
U. Beier, Liqing Wang, T. Bhatti, Yujie Liu, R. Han, Guanghui Ge, W. Hancock (2011)
Sirtuin-1 Targeting Promotes Foxp3+ T-Regulatory Cell Function and Prolongs Allograft SurvivalMolecular and Cellular Biology, 31
Histone/protein deacetylases (HDACs) are frequently upregulated in human malignancies and have therefore become therapeutic targets in cancer therapy. However, inhibiting certain HDAC isoforms can have protolerogenic effects on the immune system, which could make it easier for tumor cells to evade the host immune system. Therefore, a better understanding of how each HDAC isoform affects immune biology is needed to develop targeted cancer therapy. Here, we studied the immune phenotype of HDAC5–/– mice on a C57BL/6 background. While HDAC5–/– mice replicate at expected Mendelian ratios and do not develop overt autoimmune disease, their T‐regulatory (Treg) cells show reduced suppressive function in vitro and in vivo. Likewise, CD4+ T‐cells lacking HDAC5 convert poorly to Tregs under appropriately polarizing conditions. To test if this attenuated Treg formation and suppressive function translated into improved anticancer immunity, we inoculated HDAC5–/– mice and littermate controls with a lung adenocarcinoma cell line. Cumulatively, lack of HDAC5 did not lead to better anticancer immunity. We found that CD8+ T cells missing HDAC5 had a reduced ability to produce the cytokine, IFN‐γ, in vitro and in vivo, which may offset the benefit of weakened Treg function and formation. Taken together, targeting HDAC5 weakens suppressive function and de‐novo induction of Tregs, but also reduces the ability of CD8+ T cells to produce IFN‐γ.
International Journal of Cancer – Wiley
Published: May 15, 2016
Keywords: ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.