Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow.

Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and... We describe a microfluidic technique for separation of particles and cells and a device that employs this technique to separate white blood cells (WBC) from whole human blood. The separation is performed in cross-flow in an array of microchannels with a deep main channel and large number of orthogonal, shallow side channels. As a suspension of particles advances through the main channel, a perfusion flow through the side channels gradually exchanges the medium of the suspension and washes away particles that are sufficiently small to enter the shallow side channels. The microfluidic device is tested with a suspension of polystyrene beads and is shown to efficaciously exchange the carrier medium while retaining all beads. In tests with whole human blood, the device is shown to reduce the content of red blood cells (RBC) by a factor of approximately 4000 with retention of 98% of WBCs. The ratio between WBCs and RBCs reached at an outlet of the device is 2.4 on average. The device is made of a single cast of poly(dimethylsiloxane) sealed with a cover glass and is simple to fabricate. The proposed technique of separation by perfusion in continuous cross-flow could be used to enrich rare populations of cells based on differences in size, shape, and deformability. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Analytical Chemistry Pubmed

Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow.

Analytical Chemistry , Volume 79 (5): -1992 – Jun 21, 2007

Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow.


Abstract

We describe a microfluidic technique for separation of particles and cells and a device that employs this technique to separate white blood cells (WBC) from whole human blood. The separation is performed in cross-flow in an array of microchannels with a deep main channel and large number of orthogonal, shallow side channels. As a suspension of particles advances through the main channel, a perfusion flow through the side channels gradually exchanges the medium of the suspension and washes away particles that are sufficiently small to enter the shallow side channels. The microfluidic device is tested with a suspension of polystyrene beads and is shown to efficaciously exchange the carrier medium while retaining all beads. In tests with whole human blood, the device is shown to reduce the content of red blood cells (RBC) by a factor of approximately 4000 with retention of 98% of WBCs. The ratio between WBCs and RBCs reached at an outlet of the device is 2.4 on average. The device is made of a single cast of poly(dimethylsiloxane) sealed with a cover glass and is simple to fabricate. The proposed technique of separation by perfusion in continuous cross-flow could be used to enrich rare populations of cells based on differences in size, shape, and deformability.

Loading next page...
 
/lp/pubmed/perfusion-in-microfluidic-cross-flow-separation-of-white-blood-cells-xLPRsCp3hD

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0003-2700
DOI
10.1021/ac061659b
pmid
17249639

Abstract

We describe a microfluidic technique for separation of particles and cells and a device that employs this technique to separate white blood cells (WBC) from whole human blood. The separation is performed in cross-flow in an array of microchannels with a deep main channel and large number of orthogonal, shallow side channels. As a suspension of particles advances through the main channel, a perfusion flow through the side channels gradually exchanges the medium of the suspension and washes away particles that are sufficiently small to enter the shallow side channels. The microfluidic device is tested with a suspension of polystyrene beads and is shown to efficaciously exchange the carrier medium while retaining all beads. In tests with whole human blood, the device is shown to reduce the content of red blood cells (RBC) by a factor of approximately 4000 with retention of 98% of WBCs. The ratio between WBCs and RBCs reached at an outlet of the device is 2.4 on average. The device is made of a single cast of poly(dimethylsiloxane) sealed with a cover glass and is simple to fabricate. The proposed technique of separation by perfusion in continuous cross-flow could be used to enrich rare populations of cells based on differences in size, shape, and deformability.

Journal

Analytical ChemistryPubmed

Published: Jun 21, 2007

There are no references for this article.