Access the full text.
Sign up today, get DeepDyve free for 14 days.
M. Karkkainen, A. Saaristo, L. Jussila, Kaisa Karila, E. Lawrence, K. Pajusola, H. Bueler, A. Eichmann, R. Kauppinen, M. Kettunen, S. Ylä-Herttuala, D. Finegold, R. Ferrell, K. Alitalo (2001)
A model for gene therapy of human hereditary lymphedemaProceedings of the National Academy of Sciences of the United States of America, 98
J. Wigle, N. Harvey, M. Detmar, I. Lagutina, G. Grosveld, M. Gunn, D. Jackson, G. Oliver (2002)
An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotypeThe EMBO Journal, 21
D. Wilkinson (1998)
In situ hybridization: a practical approach
Xiaolan Yang, H. Matsuura, Yan Fu, T. Sugiyama, N. Miura (2000)
MFH‐1 is required for bone morphogenetic protein‐2‐induced osteoblastic differentiation of C2C12 myoblastsFEBS Letters, 470
K. Kaestner, S. Bleckmann, A. Monaghan, J. Schlöndorff, A. Mincheva, P. Lichter, G. Schütz (1996)
Clustered arrangement of winged helix genes fkh-6 and MFH-1: possible implications for mesoderm development.Development, 122 6
P. Lindahl, B. Johansson, P. Levéen, C. Betsholtz (1997)
Pericyte loss and microaneurysm formation in PDGF-B-deficient mice.Science, 277 5323
M. Laitinen, K. Mäkinen, H. Manninen, P. Matsi, M. Kossila, R. Agrawal, T. Pakkanen, J. Luoma, H. Viita, J. Hartikainen, E. Alhava, M. Laakso, S. Ylä-Herttuala (1998)
Adenovirus-mediated gene transfer to lower limb artery of patients with chronic critical leg ischemia.Human gene therapy, 9 10
C. Suri, Pamela Jones, Sybill Patan, S. Bartunkova, P. Maisonpierre, S. Davis, Thomas Sato, G. Yancopoulos (1996)
Requisite Role of Angiopoietin-1, a Ligand for the TIE2 Receptor, during Embryonic AngiogenesisCell, 87
A. Irrthum, M. Karkkainen, K. Devriendt, K. Alitalo, M. Vikkula (2000)
Congenital hereditary lymphedema caused by a mutation that inactivates VEGFR3 tyrosine kinase.American journal of human genetics, 67 2
T. Yamaguchi, D. Dumont, R. Conlon, M. Breitman, J. Rossant (1993)
flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors.Development, 118 2
Ji Fang, S. Dagenais, R. Erickson, M. Arlt, M. Glynn, J. Gorski, L. Seaver, T. Glover (2000)
Mutations in FOXC2 (MFH-1), a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome.American journal of human genetics, 67 6
T. Petrova, T. Mäkinen, T. Mäkelä, J. Saarela, I. Virtanen, R. Ferrell, D. Finegold, D. Kerjaschki, S. Ylä-Herttuala, K. Alitalo (2002)
Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox‐1 homeobox transcription factorThe EMBO Journal, 21
G. Lennon, C. Auffray, M. Polymeropoulos, M. Soares (1996)
The I.M.A.G.E. Consortium: an integrated molecular analysis of genomes and their expression.Genomics, 33 1
M. Hellström, M. Kalén, P. Lindahl, A. Abramsson, C. Betsholtz (1999)
Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse.Development, 126 14
T. Furumoto, N. Miura, T. Akasaka, Y. Mizutani-Koseki, H. Sudo, K. Fukuda, M. Maekawa, S. Yuasa, Y. Fu, H. Moriya, M. Taniguchi, K. Imai, E. Dahl, R. Balling, M. Pavlova, A. Gossler, H. Koseki (1999)
Notochord-dependent expression of MFH1 and PAX1 cooperates to maintain the proliferation of sclerotome cells during the vertebral column development.Developmental biology, 210 1
Cecilia Bondjers, M. Kalén, M. Hellström, S. Scheidl, A. Abramsson, Oliver Renner, P. Lindahl, Hyeseong Cho, J. Kehrl, C. Betsholtz (2003)
Transcription profiling of platelet-derived growth factor-B-deficient mouse embryos identifies RGS5 as a novel marker for pericytes and vascular smooth muscle cells.The American journal of pathology, 162 3
D. Dumont, L. Jussila, J. Taipale, Athina Lymboussaki, T. Mustonen, K. Pajusola, M. Breitman, K. Alitalo (1998)
Cardiovascular failure in mouse embryos deficient in VEGF receptor-3.Science, 282 5390
G. Winnier, T. Kume, Ke-Yu Deng, R. Rogers, J. Bundy, Cameron Raines, M. Walter, B. Hogan, S. Conway (1999)
Roles for the winged helix transcription factors MF1 and MFH1 in cardiovascular development revealed by nonallelic noncomplementation of null alleles.Developmental biology, 213 2
N. Gale, G. Thurston, S. Hackett, R. Renard, Quan Wang, J. McClain, Clifford Martin, C. Witte, M. Witte, D. Jackson, C. Suri, P. Campochiaro, S. Wiegand, G. Yancopoulos (2002)
Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1.Developmental cell, 3 3
M. Karkkainen, P. Haiko, K. Sainio, J. Partanen, J. Taipale, T. Petrova, M. Jeltsch, D. Jackson, M. Talikka, H. Rauvala, C. Betsholtz, K. Alitalo (2004)
Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veinsNature Immunology, 5
R. Bell, G. Brice, A. Child, V. Murday, S. Mansour, C. Sandy, J. Collin, A. Brady, D. Callen, K. Burnand, Peter Mortimer, S. Jeffery (2001)
Analysis of lymphoedema-distichiasis families forFOXC2 mutations reveals small insertions and deletions throughout the geneHuman Genetics, 108
Lisa Taylor, L. Khachigian (2000)
Induction of Platelet-derived Growth Factor B-chain Expression by Transforming Growth Factor-β Involves Transactivation by Smads*The Journal of Biological Chemistry, 275
S. Oh, T. Seki, Kendrick Goss, T. Imamura, Y. Yi, P. Donahoe, Li Li, K. Miyazono, P. Dijke, Seong-Jin Kim, E. Li (2000)
Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis.Proceedings of the National Academy of Sciences of the United States of America, 97 6
A. Kaipainen, J. Korhonen, T. Mustonen, V. Hinsbergh, G. Fang, D. Dumont, M. Breitman, K. Alitalo (1995)
Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development.Proceedings of the National Academy of Sciences of the United States of America, 92
B. Kriederman, T. Myloyde, M. Witte, S. Dagenais, C. Witte, M. Rennels, M. Bernas, M. Lynch, R. Erickson, Mark Caulder, N. Miura, D. Jackson, B. Brooks, T. Glover (2003)
FOXC2 haploinsufficient mice are a model for human autosomal dominant lymphedema-distichiasis syndrome.Human molecular genetics, 12 10
M. Karkkainen, R. Ferrell, E. Lawrence, M. Kimak, Kara Levinson, M. McTigue, K. Alitalo, D. Finegold (2000)
Missense mutations interfere with VEGFR-3 signalling in primary lymphoedemaNature Genetics, 25
P. Carmeliet, N. Mackman, L. Moons, T. Luther, P. Gressens, Lise Vlaenderen, Hilde Demunck, M. Kasper, G. Breier, P. Evrard, M. Müller, W. Risau, T. Edgington, D. Collen (1996)
Role of tissue factor in embryonic blood vessel developmentNature, 383
Gnepp Dr, Green Fh (1980)
Scanning electron microscopic study of canine lymphatic vessels and their valves.Lymphology, 13 2
H. Gerhardt, C. Betsholtz (2003)
Endothelial-pericyte interactions in angiogenesisCell and Tissue Research, 314
Yujing Liu, R. Wada, T. Yamashita, Yide Mi, C. Deng, J. Hobson, H. Rosenfeldt, V. Nava, Sung-suk Chae, M. Lee, Catherine Liu, T. Hla, S. Spiegel, R. Proia (2000)
Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation.The Journal of clinical investigation, 106 8
Pirjo Laakkonen, K. Porkka, J. Hoffman, E. Ruoslahti (2002)
A tumor-homing peptide with a targeting specificity related to lymphatic vesselsNature Medicine, 8
T. Kume, Haiyan Jiang, J. Topczewska, B. Hogan (2001)
The murine winged helix transcription factors, Foxc1 and Foxc2, are both required for cardiovascular development and somitogenesis.Genes & development, 15 18
A. Irrthum, K. Devriendt, D. Chitayat, G. Matthijs, C. Glade, P. Steijlen, J. Fryns, M. Steensel, M. Vikkula (2003)
Mutations in the transcription factor gene SOX18 underlie recessive and dominant forms of hypotrichosis-lymphedema-telangiectasia.American journal of human genetics, 72 6
S. Hirakawa, Young-Kwon Hong, N. Harvey, V. Schacht, K. Matsuda, T. Libermann, M. Detmar (2003)
Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells.The American journal of pathology, 162 2
U. Ozerdem, K. Grako, K. Dahlin‐Huppe, E. Monosov, W. Stallcup (2001)
NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesisDevelopmental Dynamics, 222
A. Saaristo, Tanja Veikkola, T. Tammela, B. Enholm, M. Karkkainen, K. Pajusola, H. Bueler, S. Ylä-Herttuala, K. Alitalo (2002)
Lymphangiogenic Gene Therapy With Minimal Blood Vascular Side EffectsThe Journal of Experimental Medicine, 196
N. Miura, K. Iida, H. Kakinuma, X. Yang, T. Sugiyama (1997)
Isolation of the mouse (MFH-1) and human (FKHL 14) mesenchyme fork head-1 genes reveals conservation of their gene and protein structures.Genomics, 41 3
Kiyoshi Iida, Haruhiko Koseki, Hideaki Kakinuma, Naoko Kato, Y. Mizutani-Koseki, H. Ohuchi, H. Yoshioka, S. Noji, Koichi Kawamura, Yuki Kataoka, Fukuko Ueno, Masaru Taniguchi, Nobuaki Yoshida, Toshihiro Sugiyama, N. Miura (1997)
Essential roles of the winged helix transcription factor MFH-1 in aortic arch patterning and skeletogenesis.Development, 124 22
S. Breiteneder-Geleff, A. Soleiman, H. Kowalski, R. Horvat, G. Amann, E. Kriehuber, Katja Diem, W. Weninger, E. Tschachler, K. Alitalo, D. Kerjaschki (1999)
Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium.The American journal of pathology, 154 2
J. Wigle, G. Oliver (1999)
Prox1 Function Is Required for the Development of the Murine Lymphatic SystemCell, 98
G. Oliver, M. Detmar (2002)
The rediscovery of the lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature.Genes & development, 16 7
X. Yang, Lucio Castilla, Xiaoling Xu, Cuiling Li, Jessica Gotay, Michael Weinstein, Pu Liu, Chu-Xia Deng (1999)
Angiogenesis defects and mesenchymal apoptosis in mice lacking SMAD5.Development, 126 8
T. Kume, Ke-Yu Deng, B. Hogan (2000)
Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the kidney and urinary tract.Development, 127 7
J. Vajda, M. Tomcsik (1971)
The structure of the valves of the lymphatic vessels.Acta anatomica, 78 4
G. Brice, S. Mansour, R. Bell, J. Collin, A. Child, A. Brady, M. Sarfarazi, K. Burnand, S. Jeffery, P. Mortimer, V. Murday (2002)
Analysis of the phenotypic abnormalities in lymphoedema-distichiasis syndrome in 74 patients with FOXC2 mutations or linkage to 16q24Journal of Medical Genetics, 39
D. Finegold, M. Kimak, E. Lawrence, Kara Levinson, E. Cherniske, B. Pober, Jean Dunlap, R. Ferrell (2001)
Truncating mutations in FOXC2 cause multiple lymphedema syndromes.Human molecular genetics, 10 11
Dean Li, Lise Sorensen, B. Brooke, L. Urness, E. Davis, D. Taylor, Beth Boak, Daniel Wendel (1999)
Defective angiogenesis in mice lacking endoglin.Science, 284 5419
K. Hirschi, P. D’Amore (1996)
Pericytes in the microvasculature.Cardiovascular research, 32 4
T. Mäkinen, Tanja Veikkola, S. Mustjoki, Terhi Karpanen, B. Catimel, E. Nice, Lyn Wise, A. Mercer, H. Kowalski, D. Kerjaschki, S. Stacker, M. Achen, K. Alitalo (2001)
Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF‐C/D receptor VEGFR‐3The EMBO Journal, 20
Tanja Veikkola, Marja Lohela, K. Ikenberg, T. Mäkinen, T. Korff, A. Saaristo, T. Petrova, M. Jeltsch, H. Augustin, K. Alitalo (2003)
Intrinsic versus microenvironmental regulation of lymphatic endothelial cell phenotype and functionThe FASEB Journal, 17
S. Davis, T. Aldrich, Pamela Jones, A. Acheson, D. Compton, Vivek Jain, T. Ryan, J. Bruno, C. Radziejewski, P. Maisonpierre, G. Yancopoulos (1996)
Isolation of Angiopoietin-1, a Ligand for the TIE2 Receptor, by Secretion-Trap Expression CloningCell, 87
G. Winnier, Linda Hargett, Brigid Hogan (1997)
The winged helix transcription factor MFH1 is required for proliferation and patterning of paraxial mesoderm in the mouse embryo.Genes & development, 11 7
Lymphatic vessels are essential for the removal of interstitial fluid and prevention of tissue edema. Lymphatic capillaries lack associated mural cells, and collecting lymphatic vessels have valves, which prevent lymph backflow. In lymphedema-distichiasis (LD), lymphatic vessel function fails because of mutations affecting the forkhead transcription factor FOXC2. We report that Foxc2 −/− mice show abnormal lymphatic vascular patterning, increased pericyte investment of lymphatic vessels, agenesis of valves and lymphatic dysfunction. In addition, an abnormally large proportion of skin lymphatic vessels was covered with smooth muscle cells in individuals with LD and in mice heterozygous for Foxc2 and for the gene encoding lymphatic endothelial receptor, Vegfr3 (also known as Flt4). Our data show that Foxc2 is essential for the morphogenesis of lymphatic valves and the establishment of a pericyte-free lymphatic capillary network and that it cooperates with Vegfr3 in the latter process. Our results indicate that an abnormal interaction between the lymphatic endothelial cells and pericytes, as well as valve defects, underlie the pathogenesis of LD.
Nature Medicine – Springer Journals
Published: Aug 22, 2004
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.