Access the full text.
Sign up today, get DeepDyve free for 14 days.
Nathan Smith, Yufeng Dong, J. Lian, Jitesh Pratap, P. Kingsley, A. Wijnen, J. Stein, E. Schwarz, R. O’Keefe, G. Stein, M. Drissi (2005)
Overlapping expression of Runx1(Cbfa2) and Runx2(Cbfa1) transcription factors supports cooperative induction of skeletal developmentJournal of Cellular Physiology, 203
Yoshiaki Ito, K. Miyazono (2003)
RUNX transcription factors as key targets of TGF-β superfamily signalingCurrent Opinion in Genetics & Development, 13
C. Grimsrud, Paul Romano, M. D'souza, J. Puzas, P. Reynolds, R. Rosier, R. O’Keefe (1999)
BMP‐6 Is an Autocrine Stimulator of Chondrocyte DifferentiationJournal of Bone and Mineral Research, 14
H. Aberle, A. Bauer, J. Stappert, A. Kispert, R. Kemler (1997)
β‐catenin is a target for the ubiquitin–proteasome pathwayThe EMBO Journal, 16
H. Akiyama, Jon Lyons, Yuko Mori‐Akiyama, Xiaohong Yang, Ren Zhang, Zhaoping Zhang, J. Deng, M. Taketo, Takashi Nakamura, R. Behringer, P. McCrea, B. Crombrugghe (2004)
Interactions between Sox9 and β-catenin control chondrocyte differentiationGenes & Development, 18
C. Hartmann, C. Tabin (2000)
Dual roles of Wnt signaling during chondrogenesis in the chicken limb.Development, 127 14
(2004)
Wnt signaling regulates Runx 2 expression in vivo and activates the bone - related Runx 2 P 1 promoter
R. Winn, Lindsay Marek, Sun-Young Han, K. Rodriguez, N. Rodriguez, M. Hammond, M. Scoyk, Henri Acosta, Justin Mirus, Nicholas Barry, Y. Bren-Mattison, T. Raay, R. Nemenoff, L. Heasley (2005)
Restoration of Wnt-7a Expression Reverses Non-small Cell Lung Cancer Cellular Transformation through Frizzled-9-mediated Growth Inhibition and Promotion of Cell Differentiation*Journal of Biological Chemistry, 280
Volk (1998)
A BMP responsive transcriptional region in the chicken type X collagen geneJ Bone Miner Res, 13
Yoshiaki Ito, K. Miyazono (2003)
RUNX transcription factors as key targets of TGF-beta superfamily signaling.Current opinion in genetics & development, 13 1
Yingzi Yang, L. Topol, Heuijung Lee, Jinling Wu (2003)
Wnt 5 a and Wnt 5 b exhibit distinct activities in coordinating chondrocyte proliferation and differentiation
H. Drissi, Arlyssa Pouliot, J. Stein, A. Wijnen, G. Stein, J. Lian (2002)
Identification of novel protein/DNA interactions within the promoter of the bone‐related transcription factor Runx2/Cbfa1Journal of Cellular Biochemistry, 86
Xizhi Guo, T. Day, Xueyuan Jiang, L. Garrett-Beal, L. Topol, Yingzi Yang (2004)
Wnt/beta-catenin signaling is sufficient and necessary for synovial joint formation.Genes & development, 18 19
M. Kengaku, M. Kengaku, J. Capdevila, Concepción Rodríguez-Esteban, J. Peña, Randy Johnson, J. Belmonte, C. Tabin (1998)
Distinct WNT pathways regulating AER formation and dorsoventral polarity in the chick limb bud.Science, 280 5367
P. Leboy, G. Grasso-Knight, Marina D'Angelo, Susan Volk, J. Lian, H. Drissi, G. Stein, Sherrill Adams (2001)
Smad-Runx Interactions During Chondrocyte MaturationThe Journal of Bone & Joint Surgery, 83
Julie Rudnicki, Anthony Brown (1997)
Inhibition of chondrogenesis by Wnt gene expression in vivo and in vitro.Developmental biology, 185 1
J. Lian, A. Javed, S. Zaidi, C. Lengner, M. Montecino, A. Wijnen, J. Stein, G. Stein (2004)
Regulatory controls for osteoblast growth and differentiation: role of Runx/Cbfa/AML factors.Critical reviews in eukaryotic gene expression, 14 1-2
Y. Kawano, R. Kypta (2003)
Secreted antagonists of the Wnt signalling pathwayJournal of Cell Science, 116
Y. Tamamura, T. Otani, N. Kanatani, E. Koyama, J. Kitagaki, T. Komori, Yoshihiko Yamada, F. Costantini, S. Wakisaka, M. Pacifici, M. Iwamoto, M. Enomoto-Iwamoto (2005)
Developmental regulation of Wnt/beta-catenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification.The Journal of biological chemistry, 280 19
Michael Veeman, J. Axelrod, R. Moon (2003)
A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling.Developmental cell, 5 3
F. Otto, A. Thornell, T. Crompton, A. Denzel, K. Gilmour, I. Rosewell, G. Stamp, R. Beddington, S. Mundlos, B. Olsen, P. Selby, M. Owen (1997)
Cbfa1, a Candidate Gene for Cleidocranial Dysplasia Syndrome, Is Essential for Osteoblast Differentiation and Bone DevelopmentCell, 89
T. Komori (2005)
Regulation of skeletal development by the Runx family of transcription factorsJournal of Cellular Biochemistry, 95
Jeffrey Miller, A. Hocking, Jeffrey Brown, R. Moon (1999)
Mechanism and function of signal transduction by the Wnt/β-catenin and Wnt/Ca2+ pathwaysOncogene, 18
Kathleen Daumer, A. Tufan, R. Tuan (2004)
Long‐term in vitro analysis of limb cartilage development: Involvement of Wnt signalingJournal of Cellular Biochemistry, 93
Hui-Chuan Huang, P. Klein (2004)
The Frizzled family: receptors for multiple signal transduction pathwaysGenome Biology, 5
R. Moon, A. Kohn, G. Ferrari, A. Kaykas (2004)
WNT and beta-catenin signalling: diseases and therapies.Nature reviews. Genetics, 5 9
R. Moon, A. Kohn, G. Ferrari, A. Kaykas (2004)
WNT and β-catenin signalling: diseases and therapiesNature Reviews Genetics, 5
Theo Hill, Daniela Später, M. Taketo, W. Birchmeier, C. Hartmann (2005)
Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes.Developmental cell, 8 5
H. Aberle, A. Bauer, J. Stappert, A. Kispert, R. Kemler (1997)
beta-catenin is a target for the ubiquitin-proteasome pathway.The EMBO journal, 16 13
C. Ueta, M. Iwamoto, N. Kanatani, C. Yoshida, Yang Liu, M. Enomoto-Iwamoto, Tomoharu Ohmori, H. Enomoto, Ken Nakata, K. Takada, K. Kurisu, T. Komori (2001)
Skeletal Malformations Caused by Overexpression of Cbfa1 or Its Dominant Negative Form in ChondrocytesThe Journal of Cell Biology, 153
I. Kim, F. Otto, B. Zabel, S. Mundlos (1999)
Regulation of chondrocyte differentiation by Cbfa1Mechanisms of Development, 80
V. Church, P. Francis-West (2002)
Wnt signalling during limb development.The International journal of developmental biology, 46 7
T. Day, Xizhi Guo, L. Garrett-Beal, Yingzi Yang (2005)
Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis.Developmental cell, 8 5
Tian‐Fang Li, Yufeng Dong, A. Ionescu, R. Rosier, M. Zuscik, E. Schwarz, R. O’Keefe, H. Drissi (2004)
Parathyroid hormone-related peptide (PTHrP) inhibits Runx2 expression through the PKA signaling pathway.Experimental cell research, 299 1
M. Iwamoto, J. Kitagaki, Y. Tamamura, C. Gentili, E. Koyama, H. Enomoto, T. Komori, M. Pacifici, M. Enomoto-Iwamoto (2003)
Runx2 expression and action in chondrocytes are regulated by retinoid signaling and parathyroid hormone-related peptide (PTHrP).Osteoarthritis and cartilage, 11 1
T. Komori (2002)
Runx2, A multifunctional transcription factor in skeletal developmentJournal of Cellular Biochemistry, 87
C. Lengner, Mohammad Hassan, Ryan Serra, Christoph Lepper, A. Wijnen, J. Stein, J. Lian, G. Stein (2005)
Nkx3.2-mediated Repression of Runx2 Promotes Chondrogenic Differentiation*Journal of Biological Chemistry, 280
H. Drissi, Quyen Luc, Rauf Shakoori, Susana Lopes, Je-Yong Choi, A. Terry, M. Hu, S. Jones, J. Neil, J. Lian, J. Stein, A. Wijnen, G. Stein (2000)
Transcriptional autoregulation of the bone related CBFA1/RUNX2 geneJournal of Cellular Physiology, 184
Y. Kawakami, J. Capdevila, D. Büscher, T. Itoh, C. Esteban, J. Belmonte (2001)
WNT Signals Control FGF-Dependent Limb Initiation and AER Induction in the Chick EmbryoCell, 104
P. Ducy, Rui Zhang, V. Geoffroy, A. Ridall, G. Karsenty (1997)
Osf2/Cbfa1: A Transcriptional Activator of Osteoblast DifferentiationCell, 89
R. Franceschi, G. Xiao (2003)
Regulation of the osteoblast‐specific transcription factor, Runx2: Responsiveness to multiple signal transduction pathwaysJournal of Cellular Biochemistry, 88
M. Enomoto-Iwamoto, J. Kitagaki, E. Koyama, Y. Tamamura, Changshan Wu, N. Kanatani, T. Koike, H. Okada, T. Komori, T. Yoneda, V. Church, P. Francis-West, K. Kurisu, T. Nohno, M. Pacifici, M. Iwamoto (2002)
The Wnt antagonist Frzb-1 regulates chondrocyte maturation and long bone development during limb skeletogenesis.Developmental biology, 251 1
H. Akiyama, Jon Lyons, Yuko Mori‐Akiyama, Xiaohong Yang, Ren Zhang, Zhaoping Zhang, J. Deng, M. Taketo, Takashi Nakamura, R. Behringer, P. McCrea, B. Crombrugghe (2004)
Interactions between Sox9 and beta-catenin control chondrocyte differentiation.Genes & development, 18 9
Jeffrey Miller (2001)
The WntsGenome Biology, 3
Yufeng Dong, H. Drissi, Mo Chen, Di Chen, M. Zuscik, E. Schwarz, R. O’Keefe (2005)
Wnt‐mediated regulation of chondrocyte maturation: Modulation by TGF‐βJournal of Cellular Biochemistry, 95
C. Ferguson, E. Schwarz, P. Reynolds, J. Puzas, R. Rosier, R. O’Keefe (2000)
Smad2 and 3 Mediate Transforming Growth Factor-β1-Induced Inhibition of Chondrocyte Maturation* *The work was supported by National Health Services Grant AR-38945 (to R.J.O.) and an Orthopaedic Research Education Foundation Award (to C.M.F.).Endocrinology, 141 12
M. Drissi, Xu-feng Li, T. Sheu, M. Zuscik, E. Schwarz, J. Puzas, R. Rosier, R. O’Keefe (2003)
Runx2/Cbfa1 stimulation by retinoic acid is potentiated by BMP2 signaling through interaction with Smad1 on the collagen X promoter in chondrocytesJournal of Cellular Biochemistry, 90
M. Kühl (2004)
The WNT/calcium pathway: biochemical mediators, tools and future requirements.Frontiers in bioscience : a journal and virtual library, 9
Fumiko Yano, F. Kugimiya, Shinsuke Ohba, T. Ikeda, H. Chikuda, T. Ogasawara, N. Ogata, T. Takato, Kozo Nakamura, H. Kawaguchi, U. Chung (2005)
The canonical Wnt signaling pathway promotes chondrocyte differentiation in a Sox9-dependent manner.Biochemical and biophysical research communications, 333 4
H. Drissi, Arlyssa Pouliot, Christian Koolloos, J. Stein, J. Lian, G. Stein, A. Wijnen (2002)
1,25-(OH)2-vitamin D3 suppresses the bone-related Runx2/Cbfa1 gene promoter.Experimental cell research, 274 2
C. Hartmann, C. Tabin (2001)
Wnt-14 Plays a Pivotal Role in Inducing Synovial Joint Formation in the Developing Appendicular SkeletonCell, 104
C. Dealy, Adam Roth, D. Ferrari, A. Brown, R. Kosher (1993)
Wnt-5a and Wnt-7a are expressed in the developing chick limb bud in a manner suggesting roles in pattern formation along the proximodistal and dorsoventral axesMechanisms of Development, 43
R. Habas, I. Dawid, Xi He (2003)
Coactivation of Rac and Rho by Wnt/Frizzled signaling is required for vertebrate gastrulation.Genes & development, 17 2
Michael Veeman, J. Axelrod, R. Moon (2003)
A Second CanonDevelopmental Cell, 5
Xuefeng Li, E. Schwarz, M. Zuscik, R. Rosier, A. Ionescu, J. Puzas, H. Drissi, T. Sheu, R. O’Keefe (2003)
Retinoic acid stimulates chondrocyte differentiation and enhances bone morphogenetic protein effects through induction of Smad1 and Smad5.Endocrinology, 144 6
Je-Yong Choi, Je-Yong Choi, Jitesh Pratap, A. Javed, S. Zaidi, L. Xing, E. Balint, Sara Dalamangas, Brenda Boyce, A. Wijnen, J. Lian, J. Stein, S. Jones, G. Stein (2001)
Subnuclear targeting of Runx/Cbfa/AML factors is essential for tissue-specific differentiation during embryonic developmentProceedings of the National Academy of Sciences of the United States of America, 98
S. Stricker, R. Fundele, A. Vortkamp, S. Mundlos (2002)
Role of Runx genes in chondrocyte differentiation.Developmental biology, 245 1
Ferguson (2000)
Smad2 and 3 mediate TGF-β1-induced inhibition of chondrocyte maturationEndocrinology, 141
Xizhi Guo, T. Day, Xueyuan Jiang, L. Garrett-Beal, L. Topol, Yingzi Yang (2004)
Wnt/β-catenin signaling is sufficient and necessary for synovial joint formationGenes & Development, 18
Masahiko Inada, T. Yasui, S. Nomura, S. Miyake, K. Deguchi, Miki Himeno, M. Sato, H. Yamagiwa, T. Kimura, Natuo Yasui, T. Ochi, N. Endo, Yukihiko Kitamura, T. Kishimoto, T. Komori (1999)
Maturational disturbance of chondrocytes in Cbfa1‐deficient miceDevelopmental Dynamics, 214
S. Volk, P. Valle, T. Leask, P. Leboy (1998)
A BMP responsive transcriptional region in the chicken type X collagen gene.Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 13 10
T. Komori, H. Yagi, S. Nomura, Akira Yamaguchi, Koichi Sasaki, K. Deguchi, Y. Shimizu, R. Bronson, Y-H Gao, Masahiko Inada, Makoto Sato, R. Okamoto, Yukihiko Kitamura, S. Yoshiki, T. Kishimoto (1997)
Targeted Disruption of Cbfa1 Results in a Complete Lack of Bone Formation owing to Maturational Arrest of OsteoblastsCell, 89
We investigated the molecular mechanisms underlying canonical Wnt‐mediated regulation of chondrocyte hypertrophy using chick upper sternal chondrocytes. Replication competent avian sarcoma (RCAS) viral over‐expression of Wnt8c and Wnt9a, upregulated type X collagen (col10a1) and Runx2 mRNA expression thereby inducing chondrocyte hypertrophy. Wnt8c and Wnt9a strongly inhibited mRNA levels of Sox9 and type II collagen (col2a1). Wnt8c further enhanced canonical bone morphogenetic proteins (BMP‐2)‐induced expression of Runx2 and col10a1 while Wnt8c and Wnt9a inhibited TGF‐β‐induced expression of Sox9 and col2a1. Over‐expression of β‐catenin mimics the effect of Wnt8c and Wnt9a by upregulating Runx2, col10a1, and alkaline phosphatase (AP) mRNA levels while it inhibits col2a1 transcription. Western blot analysis shows that Wnt8c and β‐catenin also induces Runx2 protein levels in chondrocytes. Thus, our results indicate that activation of the canonical β‐catenin Wnt signaling pathway induces chondrocyte hypertrophy and maturation. We further investigated the effects of β‐catenin‐TCF/Lef on Runx2 promoter. Co‐transfection of lymphoid enhancer factor (Lef1) and β‐catenin in chicken upper sternal chondrocytes together with deletion constructs of the Runx2 promoter shows that the proximal region spanning the first 128 base pairs of this promoter is responsible for the Wnt‐mediated induction of Runx2. Mutation of the TCF/Lef binding site in the −128 fragment of the Runx2 promoter resulted in loss of its responsiveness to β‐catenin. Additionally, gel‐shift assay analyses determined the DNA/protein interaction of the TCF/Lef binding sites on the Runx2 promoter. Finally, our site‐directed mutagenesis data demonstrated that the Runx2 site on type X collagen promoter is required for canonical Wnt induction of col10a1. Altogether we demonstrate that Wnt/β‐catenin signaling is regulated by TGF‐β and BMP‐2 in chick upper sternal chondrocytes, and mediates chondrocyte hypertrophy at least partly through activation of Runx2 which in turn may induce col10a1 expression. J. Cell. Physiol. © 2006 Wiley‐Liss, Inc.
Journal of Cellular Physiology – Wiley
Published: Jul 1, 2006
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.