Access the full text.
Sign up today, get DeepDyve free for 14 days.
R. Diebold, Joachim Schuster, K. Däschner, S. Binder (2002)
The Branched-Chain Amino Acid Transaminase Gene Family in Arabidopsis Encodes Plastid and Mitochondrial Proteins1Plant Physiology, 129
E. Nambara, H. Kawaide, Yuji Kamiya, Satoshi Naito (1998)
Characterization of an Arabidopsis thaliana mutant that has a defect in ABA accumulation: ABA-dependent and ABA-independent accumulation of free amino acids during dehydration.Plant & cell physiology, 39 8
Gregory Maloney, A. Kochevenko, D. Tieman, Takayuki Tohge, U. Krieger, D. Zamir, Mark Taylor, A. Fernie, H. Klee (2010)
Characterization of the Branched-Chain Amino Acid Aminotransferase Enzyme Family in Tomato1[W][OA]Plant Physiology, 153
K. Okada, K. Hirotsu, Mamoru Sato, H. Hayashi, H. Kagamiyama (1997)
Three-dimensional structure of Escherichia coli branched-chain amino acid aminotransferase at 2.5 A resolution.Journal of biochemistry, 121 4
Donald Walters, John Steffens (1990)
Branched Chain Amino Acid Metabolism in the Biosynthesis of Lycopersicon pennellii Glucose Esters.Plant physiology, 93 4
Hao Chen, Kristen Saksa, F. Zhao, Joyce Qiu, L. Xiong (2010)
Genetic analysis of pathway regulation for enhancing branched-chain amino acid biosynthesis in plants.The Plant journal : for cell and molecular biology, 63 4
Lili Kandra, Ray Severson, George Wagner (1990)
Modified branched-chain amino acid pathways give rise to acyl acids of sucrose esters exuded from tobacco leaf trichomes.European journal of biochemistry, 188 2
W. Araújo, K. Ishizaki, A. Nunes‐Nesi, T. Larson, Takayuki Tohge, Ina Krahnert, Sandra Witt, Toshihiro Obata, N. Schauer, I. Graham, C. Leaver, A. Fernie (2010)
Identification of the 2-Hydroxyglutarate and Isovaleryl-CoA Dehydrogenases as Alternative Electron Donors Linking Lysine Catabolism to the Electron Transport Chain of Arabidopsis Mitochondria[W][OA]Plant Cell, 22
M. Riboni, M. Galbiati, C. Tonelli, Lucio Conti (2013)
GIGANTEA Enables Drought Escape Response via Abscisic Acid-Dependent Activation of the Florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS11[C][W]Plant Physiology, 162
M. Ashburner (1989)
A Laboratory manual
Peiqiang Feng, Hailong Guo, W. Chi, Xin Chai, Xuwu Sun, Xiumei Xu, Jinfang Ma, J. Rochaix, D. Leister, Haiyang Wang, Congming Lu, Lixin Zhang (2016)
Chloroplast retrograde signal regulates floweringProceedings of the National Academy of Sciences, 113
Tanja Knill, Joachim Schuster, M. Reichelt, J. Gershenzon, S. Binder (2007)
Arabidopsis Branched-Chain Aminotransferase 3 Functions in Both Amino Acid and Glucosinolate Biosynthesis1[W][OA]Plant Physiology, 146
F. Gao, Chunzheng Wang, Chunhong Wei, Yi Li (2009)
A branched-chain aminotransferase may regulate hormone levels by affecting KNOX genes in plantsPlanta, 230
Khin Win, Chunying Zhang, Kihwan Song, Jeong Lee, Sanghyeob Lee (2015)
Development and characterization of a co-dominant molecular marker via sequence analysis of a genomic region containing the Female (F) locus in cucumber (Cucumis sativus L.)Molecular Breeding, 35
P. Boss, R. Bastow, J. Mylne, C. Dean (2004)
Multiple Pathways in the Decision to Flower: Enabling, Promoting, and ResettingThe Plant Cell Online, 16
H. Beck, A. Hansen, F. Lauritsen (2004)
Catabolism of leucine to branched‐chain fatty acids in Staphylococcus xylosusJournal of Applied Microbiology, 96
O. Emanuelsson, Henrik Nielsen, S. Brunak, G. Heijne (2000)
Predicting subcellular localization of proteins based on their N-terminal amino acid sequence.Journal of molecular biology, 300 4
M. Riboni, Alice Test, M. Galbiati, C. Tonelli, Lucio Conti (2016)
ABA-dependent control of GIGANTEA signalling enables drought escape via up-regulation of FLOWERING LOCUS T in Arabidopsis thalianaJournal of Experimental Botany, 67
Itay Gonda, Einat Bar, V. Portnoy, S. Lev, Joseph Burger, A. Schaffer, Y. Tadmor, S. Gepstein, J. Giovannoni, N. Katzir, E. Lewinsohn (2010)
Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruitJournal of Experimental Botany, 61
A. Kroumova, Z. Xie, G. Wagner (1994)
A pathway for the biosynthesis of straight and branched, odd- and even-length, medium-chain fatty acids in plants.Proceedings of the National Academy of Sciences of the United States of America, 91 24
G. Kohlhaw (2003)
Leucine Biosynthesis in Fungi: Entering Metabolism through the Back DoorMicrobiology and Molecular Biology Reviews, 67
A. Warzybok, M. Migocka (2013)
Reliable Reference Genes for Normalization of Gene Expression in Cucumber Grown under Different Nitrogen NutritionPLoS ONE, 8
V. Joshi, Je-Gun Joung, Z. Fei, G. Jander (2010)
Interdependence of threonine, methionine and isoleucine metabolism in plants: accumulation and transcriptional regulation under abiotic stressAmino Acids, 39
S. Hong, S. Bahn, Aram Lyu, H. Jung, J. Ahn (2010)
Identification and testing of superior reference genes for a starting pool of transcript normalization in Arabidopsis.Plant & cell physiology, 51 10
Tatjana Hildebrandt, Adriano Nesi, W. Araújo, H. Braun (2015)
Amino Acid Catabolism in Plants.Molecular plant, 8 11
O. Emanuelsson, S. Brunak, G. Heijne, H. Nielsen (2007)
Locating proteins in the cell using TargetP, SignalP and related toolsNature Protocols, 2
D. Weigel, J. Glazebrook (2002)
Arabidopsis : a laboratory manual
C. Prohl, G. Kispál, R. Lill (2000)
Branched-chain-amino-acid transaminases of yeast Saccharomyces cerevisiae.Methods in enzymology, 324
JB Jin, H Bae, SJ Kim, YH Jin, CH Goh, DH Kim, YJ Lee, YC Tse, L Jiang (2003)
The Arabidopsis dynamin-like proteins ADL1C and ADL1E play a critical role in mitochondrial morphogenesisPlant Cell, 15
Jeong Lee, Suhyun Jin, S. Kim, Wanhui Kim, J. Ahn (2017)
A fast, efficient chromatin immunoprecipitation method for studying protein-DNA binding in Arabidopsis mesophyll protoplastsPlant Methods, 13
K. Kazan, Rebecca Lyons (2016)
The link between flowering time and stress tolerance.Journal of experimental botany, 67 1
Shusei Sato, S. Tabata, H. Hirakawa, E. Asamizu, K. Shirasawa, S. Isobe, T. Kaneko, Yasukazu Nakamura, D. Shibata, K. Aoki, M. Egholm, James Knight, R. Bogden, Changbao Li, Yang Shuang, Xun Xu, S. Pan, Shifeng Cheng, Xin Liu, Yuanyuan Ren, Jun Wang, A. Albiero, F. Pero, S. Todesco, J. Eck, Robert Buels, A. Bombarely, J. Gosselin, Minyun Huang, J. Leto, Naama Menda, S. Strickler, Linyong Mao, Shan Gao, I. Tecle, T. York, Yi Zheng, J. Vrebalov, Je Lee, S. Zhong, L. Mueller, W. Stiekema, Paolo Ribeca, T. Alioto, Wencai Yang, Sanwen Huang, Yong-chen Du, Zhonghua Zhang, Jianchang Gao, Yan-mei Guo, Xiaoxuan Wang, Ying Li, Jun He, Chuanyou Li, Zhukuan Cheng, Jianru Zuo, Jianfeng Ren, Jiuhai Zhao, Liuhua Yan, Hongling Jiang, Baoliang Wang, Hongshuang Li, Zhen-jun Li, F. Fu, Bingtang Chen, B. Han, Qi Feng, Danlin Fan, Ying Wang, H. Ling, Yongbiao Xue, D. Ware, W. McCombie, Z. Lippman, Jer-Ming Chia, K. Jiang, S. Pasternak, Laura Gelley, M. Kramer, L. Anderson, Song-Bin Chang, S. Royer, L. Shearer, S. Stack, J. Rose, Yimin Xu, N. Eannetta, A. Matas, R. McQuinn, S. Tanksley, F. Camara, R. Guigó, S. Rombauts, Jeffrey Fawcett, Y. Peer, D. Zamir, Chunbo Liang, M. Spannagl, H. Gundlach, R. Bruggmann, K. Mayer, Zhiqi Jia, Junhong Zhang, Z. Ye, G. Bishop, S. Butcher, Rosa Lopez-Cobollo, Daniel Buchan, Ioannis Filippis, J. Abbott, Rekha Dixit, Manju Singh, Archana Singh, J. Pal, A. Pandit, Pradeep Singh, A. Mahato, V. Dogra, K. Gaikwad, T. Sharma, T. Mohapatra, N. Singh, M. Causse, C. Rothan, T. Schiex, Céline Noirot, A. Bellec, C. Klopp, C. Delalande, H. Bergès, J. Mariette, P. Frasse, S. Vautrin, M. Zouine, A. Latché, C. Rousseau, F. Regad, J. Pech, Murielle Philippot, M. Bouzayen, Pierre Pericard, Sonia Osorio, A. Carmen, A. Monforte, A. Granell, R. Fernández-Muñoz, Mariana Conte, G. Lichtenstein, F. Carrari, G. Bellis, F. Fuligni, C. Peano, S. Grandillo, Pasquale Termolino, M. Pietrella, Elio Fantini, G. Falcone, A. Fiore, G. Giuliano, L. Lopez, Paolo Facella, G. Perrotta, Loretta Daddiego, G. Bryan, M. Orozco, X. Pastor, D. Torrents, Keygene Schriek, R. Feron, Jan Oeveren, P. Heer, Lorena daPonte, Saskia Jacobs-Oomen, M. Cariaso, M. Prins, M. Eijk, A. Janssen, M. Haaren, Sung-Hwan Jo, Jungeun Kim, Suk-Yoon. Kwon, Sangmi Kim, D. Koo, Sanghyeob Lee, Cheol-Goo Hur, Chris Clouser, A. Rico, A. Hallab, C. Gebhardt, K. Klee, Anika Joecker, J. Warfsmann, U. Goebel, S. Kawamura, K. Yano, J. Sherman, H. Fukuoka, Satomi Negoro, Sarita Bhutty, Parul Chowdhury, D. Chattopadhyay, E. Datema, S. Smit, E. Schijlen, J. Belt, J. Haarst, S. Peters, M. Staveren, M. Henkens, P. Mooyman, T. Hesselink, R. Ham, Guoyong Jiang, M. Droege, D. Choi, B. Kang, Byung-Dong Kim, Minkyu Park, Seungill Kim, Seon-In Yeom, Yong-Hwan Lee, Y. Choi, Guangcun Li, Jianwei Gao, Yongsheng Liu, Shengxiong Huang, V. Fernández-Pedrosa, Carmen Collado, S. Zuniga, Guoping Wang, R. Cade, R. Dietrich, J. Rogers, S. Knapp, Z. Fei, Ruth White, T. Thannhauser, J. Giovannoni, M. Botella, Louise Gilbert, R. González, J. Goicoechea, Yeisoo Yu, D. Kudrna, K. Collura, Marina Wissotski, R. Wing, H. Schoof, B. Meyers, Aishwarya Gurazada, P. Green, S. Mathur, S. Vyas, A. Solanke, Rahul Kumar, Vikrant Gupta, A. Sharma, P. Khurana, J. Khurana, A. Tyagi, T. Dalmay, I. Mohorianu, Brandon Walts, S. Chamala, W. Barbazuk, Jingping Li, Hui Guo, Tae-Ho Lee, Yupeng Wang, Dong Zhang, A. Paterson, Xiyin Wang, Haibao Tang, A. Barone, M. Chiusano, M. Ercolano, N. D’Agostino, M. Filippo, Alessandra Traini, W. Sanseverino, L. Frusciante, G. Seymour, Mounir Elharam, Ying Fu, A. Hua, S. Kenton, J. Lewis, S. Lin, F. Najar, H. Lai, B. Qin, Chunmei Qu, Ruihua Shi, Doug White, James White, Yanbo Xing, Keqin Yang, Jing Yi, Ziyun Yao, Liping Zhou, B. Roe, A. Vezzi, M. Dangelo, R. Zimbello, Riccardo Schiavon, E. Caniato, Chiara Rigobello, D. Campagna, N. Vitulo, G. Valle, D. Nelson, E. Paoli, D. Szinay, H. Jong, Yuling Bai, R. Visser, R. Lankhorst, H. Beasley, K. McLaren, C. Nicholson, C. Riddle, G. Gianese (2012)
The tomato genome sequence provides insights into fleshy fruit evolutionNature, 485
O. Emanuelsson, H. Nielsen, G. Heijne (1999)
ChloroP, a neural network‐based method for predicting chloroplast transit peptides and their cleavage sitesProtein Science, 8
Yoon-Hyung Hwang, Soonkap Kim, Keh Lee, Y. Chung, Jong-Seop Lee, Jeong-Kook Kim (2016)
Functional conservation of rice OsNF-YB/YC and Arabidopsis AtNF-YB/YC proteins in the regulation of flowering timePlant Cell Reports, 35
Hongtao Ji, Yueyue Zhu, Shanyi Tian, Manyu Xu, Yimin Tian, Liang Li, Huan Wang, Li Hu, Y. Ji, Jun Ge, Weigang Wen, Hansong Dong (2014)
Downregulation of leaf flavin content induces early flowering and photoperiod gene expression in ArabidopsisBMC Plant Biology, 14
The Initiative (2000)
Analysis of the genome sequence of the flowering plant Arabidopsis thalianaNature, 408
K. Däschner, C. Thalheim, C. Guha, A. Brennicke, S. Binder (1999)
In plants a putative isovaleryl-CoA-dehydrogenase is located in mitochondriaPlant Molecular Biology, 39
Li Li, P. Thipyapong, David Breeden, J. Steffens (2003)
Overexpression of a bacterial branched-chain α-keto acid dehydrogenase complex in Arabidopsis results in accumulation of branched-chain acyl-CoAs and alteration of free amino acid composition in seedsPlant Science, 165
N. Yennawar, J. Dunbar, Myra Conway, Susan Hutson, Gregory Farber (2001)
The structure of human mitochondrial branched-chain aminotransferase.Acta crystallographica. Section D, Biological crystallography, 57 Pt 4
Joachim Schuster, Tanja Knill, M. Reichelt, J. Gershenzon, S. Binder (2006)
BRANCHED-CHAIN AMINOTRANSFERASE4 Is Part of the Chain Elongation Pathway in the Biosynthesis of Methionine-Derived Glucosinolates in Arabidopsis[W]The Plant Cell Online, 18
Bijay Singh, D. Shaner (1995)
Biosynthesis of Branched Chain Amino Acids: From Test Tube to Field.The Plant cell, 7
S. Bai, Yi-Ben Peng, Ji-Xin Cui, Hai-tao Gu, Li-Yun Xu, Yi-qin Li, Zhi-hong Xu, Shu-Nong Bai (2004)
Developmental analyses reveal early arrests of the spore-bearing parts of reproductive organs in unisexual flowers of cucumber (Cucumis sativus L.)Planta, 220
Joachim Schuster, S. Binder (2004)
The mitochondrial branched-chain aminotransferase (AtBCAT-1) is capable to initiate degradation of leucine, isoleucine and valine in almost all tissues in Arabidopsis thalianaPlant Molecular Biology, 57
A. Liepman, L. Olsen (2004)
Genomic Analysis of Aminotransferases in Arabidopsis thalianaCritical Reviews in Plant Sciences, 23
S. Binder, Tanja Knill, Joachim Schuster (2007)
Branched‐chain amino acid metabolism in higher plantsPhysiologia Plantarum, 129
A. Kochevenko, H. Klee, A. Fernie, W. Araújo (2012)
Molecular identification of a further branched-chain aminotransferase 7 (BCAT7) in tomato plants.Journal of plant physiology, 169 5
Sanwen Huang, Ruiqiang Li, Zhonghua Zhang, Li Li, X. Gu, Wei Fan, W. Lucas, Xiaowu Wang, B. Xie, Peixiang Ni, Yuanyuan Ren, Hong-mei Zhu, Jun Li, Kui Lin, W. Jin, Z. Fei, Guangcun Li, J. Staub, A. Kilian, E. Vossen, Yang Wu, Jie Guo, Jun He, Zhiqi Jia, Yi Ren, G. Tian, Yao Lu, Jue Ruan, W. Qian, Mingwei Wang, Quanfei Huang, Bo Li, Zhaoling Xuan, Jianjun Cao, Asan, Zhigang Wu, Juanbin Zhang, Q. Cai, Yinqi Bai, Bo Zhao, Yonghua Han, Ying Li, Xuefeng Li, Shenhao Wang, Qiuxiang Shi, Shiqiang Liu, W. Cho, Jae-Yean Kim, Yong Xu, K. Heller-Uszyńska, H. Miao, Zhouchao Cheng, Shengping Zhang, Jian Wu, Yuhong Yang, Houxiang Kang, Man Li, Huiqing Liang, Xiaoli Ren, Z. Shi, Ming-Xia Wen, Min Jian, Hailong Yang, Guojie Zhang, Zhentao Yang, Rui-Hui Chen, Shifang Liu, Jianwen Li, Lijia Ma, Hui Liu, Yan Zhou, J. Zhao, X. Fang, Guoqing Li, L. Fang, Yingrui Li, Dongyuan Liu, Hongkun Zheng, Yong Zhang, Nan Qin, Zhuo Li, Guohua Yang, Shuang Yang, L. Bolund, K. Kristiansen, Hancheng Zheng, Shaochuan Li, Xiuqing Zhang, Huanming Yang, Jian Wang, R. Sun, Bao-xi Zhang, S. Jiang, Jun Wang, Yong-chen Du, Songgang Li (2009)
The genome of the cucumber, Cucumis sativus L.Nature Genetics, 41
Jeong Lee, Hak-Seung Ryu, K. Chung, David Posé, S. Kim, M. Schmid, J. Ahn (2013)
Regulation of Temperature-Responsive Flowering by MADS-Box Transcription Factor RepressorsScience, 342
Maritrini Colón, F. Hernández, Karla López, Héctor Quezada, James González, G. López, C. Aranda, Alicia González (2011)
Saccharomyces cerevisiae Bat1 and Bat2 Aminotransferases Have Functionally Diverged from the Ancestral-Like Kluyveromyces lactis Orthologous EnzymePLoS ONE, 6
Jeong Lee, Seong Yoo, S. Park, Ildoo Hwang, Jong Lee, J. Ahn (2007)
Role of SVP in the control of flowering time by ambient temperature in Arabidopsis.Genes & development, 21 4
Jing Jin, Hyeunjong Bae, Soo-Jin Kim, Y. Jin, C. Goh, Dae Kim, Yong Lee, Y. Tse, Liwen Jiang, I. Hwang (2003)
The Arabidopsis Dynamin-Like Proteins ADL1C and ADL1E Play a Critical Role in Mitochondrial Morphogenesis Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.015222.The Plant Cell Online, 15
L. Gu, A. Jones, R. Last (2010)
Broad connections in the Arabidopsis seed metabolic network revealed by metabolite profiling of an amino acid catabolism mutant.The Plant journal : for cell and molecular biology, 61 4
Key message The overexpression of CsBCATs promotes flowering in Arabidopsis by regulating the expression of flowering time genes. Abstract The branched-chain amino acid transferases (BCATs) play an important role in the metabolism of branched-chain amino acids (BCAAs), such as isoleucine, leucine, and valine. They function in both the synthesis and the degradation of this class of amino acids. We identified and characterized the three BCAT genes in cucumber (Cucumis sativus L.). The tissue-specific expression profiling in cucumber plants revealed that CsBCAT2 and CsBCAT7 were highly expressed in the reproductive tissues, whereas CsBCAT3 expression was highly detected in the vegetative tissues. The subcellular localization patterns of three CsBCATs were observed in the mitochondria. The functional analyses of CsBCATs showed that CsBCAT2 and CsBCAT3 restored the growth of bat1Δ/bat2Δ double knockout yeast (Saccharomyces cerevisiae), and CsBCAT3 and CsBCAT7 with different substrate preferences acted in a reverse reaction. The transgenic approach demonstrated that the overexpression of the three CsBCATs resulted in early flowering phenotypes, which were associated with the upregulation of FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) in a manner in which they were dependent on GIGANTEA (GI)/CONSTANS (CO) and SHORT VEGETATIVE PHASE (SVP)/FLOWERING LOCUS C (FLC)
Plant Cell Reports – Springer Journals
Published: Oct 8, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.