Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Metallothionein protein protects cells from the toxic effects of heavy metal ions. To establish its protective function against ionizing radiation and alkylating agents, a model system was created by transfecting two CHO cell lines (wild-type, K1–2 and X-ray sensitive, xrs-2 subclone Bc11) with the human metallothionein II-A (hMTII-A) gene integrated in a bovine papilloma derived autonomously replicating vector. The isolated transfectants are cadmium-resistant (Cdr), due to the overexpression of the hMTII-A gene. Their steady-state level of hMTII-A mRNA can be increased up to 40-fold after Cd treatment and 20-fold after induction with ionizing radiation. The transfected cell lines proved to be as sensitive as the recipient cell lines to ionizing radiation and bleomycin but the transfectants were significantly more resistant to N-methyl-N′-nitro-N′-nitrosoguanidine (MNNG) and mitomycin C (MMC). These results lead to the conclusion that the MT protein does provide a defence mechanism to protect cells from monofunctional alkylating and cross-linking agents but not from free radicals.
Carcinogenesis – Oxford University Press
Published: Dec 1, 1989
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.