Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Direct force measurements on DNA in a solid-state nanopore

Direct force measurements on DNA in a solid-state nanopore Among the variety of roles for nanopores in biology, an important one is enabling polymer transport, for example in gene transfer between bacteria1 and transport of RNA through the nuclear membrane2. Recently, this has inspired the use of protein3,4,5 and solid-state6,7,8,9,10 nanopores as single-molecule sensors for the detection and structural analysis of DNA and RNA by voltage-driven translocation. The magnitude of the force involved is of fundamental importance in understanding and exploiting this translocation mechanism, yet so far it has remained unknown. Here, we demonstrate the first measurements of the force on a single DNA molecule in a solid-state nanopore by combining optical tweezers11 with ionic-current detection. The opposing force exerted by the optical tweezers can be used to slow down and even arrest the translocation of the DNA molecules. We obtain a value of 0.24±0.02 pN mV−1 for the force on a single DNA molecule, independent of salt concentration from 0.02 to 1 M KCl. This force corresponds to an effective charge of 0.50±0.05 electrons per base pair equivalent to a 75% reduction of the bare DNA charge. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nature Physics Springer Journals

Loading next page...
 
/lp/springer-journals/direct-force-measurements-on-dna-in-a-solid-state-nanopore-yIAunJHOPQ

References (31)

Publisher
Springer Journals
Copyright
Copyright © Springer Nature Limited 2006
Subject
Physics; Physics, general; Theoretical, Mathematical and Computational Physics; Classical and Continuum Physics; Atomic, Molecular, Optical and Plasma Physics; Condensed Matter Physics; Complex Systems
ISSN
1745-2473
eISSN
1745-2481
DOI
10.1038/nphys344
Publisher site
See Article on Publisher Site

Abstract

Among the variety of roles for nanopores in biology, an important one is enabling polymer transport, for example in gene transfer between bacteria1 and transport of RNA through the nuclear membrane2. Recently, this has inspired the use of protein3,4,5 and solid-state6,7,8,9,10 nanopores as single-molecule sensors for the detection and structural analysis of DNA and RNA by voltage-driven translocation. The magnitude of the force involved is of fundamental importance in understanding and exploiting this translocation mechanism, yet so far it has remained unknown. Here, we demonstrate the first measurements of the force on a single DNA molecule in a solid-state nanopore by combining optical tweezers11 with ionic-current detection. The opposing force exerted by the optical tweezers can be used to slow down and even arrest the translocation of the DNA molecules. We obtain a value of 0.24±0.02 pN mV−1 for the force on a single DNA molecule, independent of salt concentration from 0.02 to 1 M KCl. This force corresponds to an effective charge of 0.50±0.05 electrons per base pair equivalent to a 75% reduction of the bare DNA charge.

Journal

Nature PhysicsSpringer Journals

Published: Jul 1, 2006

There are no references for this article.