Access the full text.
Sign up today, get DeepDyve free for 14 days.
M. Sagermann (2001)
Crystal structure of the regulatory subunit H of the V-type ATPase of Saccharomyces cerevisiaeProc. Natl. Acad. Sci. U. S. A., 98
J. Ludwig (1998)
Identification and Characterization of a Novel 9.2-kDa Membrane Sector-associated Protein of Vacuolar Proton-ATPase from Chromaffin GranulesJ. Biol. Chem., 273
D. D. Jackson (1997)
VMA12 Encodes a Yeast Endoplasmic Reticulum Protein Required for Vacuolar H+-ATPase AssemblyJ. Biol. Chem., 272
J. J. Tomashek (1996)
Resolution of Subunit Interactions and Cytoplasmic Subcomplexes of the Yeast Vacuolar Proton-translocating ATPaseJ. Biol. Chem., 271
L. A. Graham, K. J. Hill, T. H. Stevens (1998)
J. Cell Biol., 142
Y. Arata (2002)
Cysteine-directed Cross-linking to Subunit B Suggests That Subunit E Forms Part of the Peripheral Stalk of the Vacuolar H+-ATPaseJ. Biol. Chem., 277
J. R. Pringle (1989)
Chapter 19 Fluorescence Microscopy Methods for YeastMethods Cell Biol., 31
P. M. Kane, C. T. Yamashiro, D. F. Wolczyk, N. Neff, M. Goebl, T. H. Stevens (1990)
Science, 250
P. M. Kane (1989)
Biochemical characterization of the yeast vacuolar H+-ATPaseJ. Biol. Chem., 264
K. Hill (2000)
Degradation of unassembled Vph1p reveals novel aspects of the yeast ER quality control systemEMBO J., 19
R. A. Capaldi, R. Aggeler (2002)
Trends Biochem. Sci., 27
H. Noji (1997)
Direct observation of the rotation of F1-ATPaseNature, 386
C. Peters, M. J. Bayer, S. Buhler, J. S. Andersen, M. Mann, A. Mayer (2001)
Nature, 409
D. Halachmi (1993)
Calcium homeostasis in yeast cells exposed to high concentrations of calcium Roles of vacuolar H+-ATPase and cellular ATPFEBS Lett., 316
X. Zhong (2000)
Regulation of Yeast Ectoapyrase Ynd1p Activity by Activator Subunit Vma13p of Vacuolar H+-ATPaseJ. Biol. Chem., 275
L. A. Graham (1995)
VMA8 Encodes a 32-kDa V1 Subunit of the Saccharomyces cerevisiae Vacuolar H+-ATPase Required for Function and Assembly of the Enzyme ComplexJ. Biol. Chem., 270
T. Nishi (2002)
The vacuolar (H+)-ATPases — nature's most versatile proton pumpsNat. Rev. Mol. Cell Biol., 3
T. Nishi, M. Forgac (2002)
Nat. Rev. Mol. Cell Biol., 3
Y. Arata, J. D. Baleja, M. Forgac (2002)
Biochemistry, 41
M. F. Manolson (1992)
The VPH1 gene encodes a 95-kDa integral membrane polypeptide required for in vivo assembly and activity of the yeast vacuolar H(+)-ATPase.J. Biol. Chem., 267
T. Nishi (2003)
The First Putative Transmembrane Segment of Subunit c“ (Vma16p) of the Yeast V-ATPase Is Not Necessary for FunctionJ. Biol. Chem., 278
J. M. Herrmann, P. Malkus, R. Schekman (1999)
Trends Cell Biol., 9
T. H. Stevens, M. Forgac (1997)
Annu. Rev. Cell Dev. Biol., 13
S. Kawasaki-Nishi (2001)
The Amino-terminal Domain of the Vacuolar Proton-translocating ATPase a Subunit Controls Targeting and in Vivo Dissociation, and the Carboxyl-terminal Domain Affects Coupling of Proton Transport and ATP HydrolysisJ. Biol. Chem., 276
K. J. Parra (2000)
The H Subunit (Vma13p) of the Yeast V-ATPase Inhibits the ATPase Activity of Cytosolic V1 ComplexesJ. Biol. Chem., 275
J. W. Zhang (1998)
Characterization of a Temperature-sensitive Yeast Vacuolar ATPase Mutant with Defects in Actin Distribution and Bud MorphologyJ. Biol. Chem., 273
T. Hirata (2003)
Subunit Rotation of Vacuolar-type Proton Pumping ATPaseJ. Biol. Chem., 278
R. Hirata (1997)
VMA11 and VMA16 Encode Second and Third Proteolipid Subunits of the Saccharomyces cerevisiae Vacuolar Membrane H+-ATPaseJ. Biol. Chem., 272
J. R. Pringle, R. A. Preston, A. E. Adams, T. Stearns, D. G. Drubin, B. K. Haarer, E. W. Jones (1989)
Methods Cell Biol., 31
L. C. Gibson (2002)
Evidence that there are two copies of subunit c″ in V0 complexes in the vacuolar H+-ATPaseBiochem. J., 366
L. A. Graham (1998)
Assembly of the Yeast Vacuolar H+-ATPase Occurs in the Endoplasmic Reticulum and Requires a Vma12p/Vma22p Assembly ComplexJ. Cell Biol., 142
K. J. Hill, T. H. Stevens (1994)
Mol. Biol. Cell, 5
J. M. Herrmann (1999)
Out of the ER—outfitters, escorts and guidesTrends Cell Biol., 9
L. A. Graham (1994)
VMA7 encodes a novel 14-kDa subunit of the Saccharomyces cerevisiae vacuolar H(+)-ATPase complexJ. Biol. Chem., 269
W. Wickner (2002)
EMBO J., 21
Y. Arata (2002)
Localization of Subunits D, E, and G in the Yeast V-ATPase Complex Using Cysteine-Mediated Cross-Linking to Subunit BBiochemistry, 41
J. J. Tomashek (1997)
V1-situated Stalk Subunits of the Yeast Vacuolar Proton-translocating ATPaseJ. Biol. Chem., 272
M. N. Ho (1993)
Isolation of vacuolar membrane H(+)-ATPase-deficient yeast mutants; the VMA5 and VMA4 genes are essential for assembly and activity of the vacuolar H(+)-ATPase.J. Biol. Chem., 268
M. N. Ho (1993)
VMA13 encodes a 54-kDa vacuolar H(+)-ATPase subunit required for activity but not assembly of the enzyme complex in Saccharomyces cerevisiae.J. Biol. Chem., 268
M. Sagermann, T. H. Stevens, B. W. Matthews (2001)
Proc. Natl. Acad. Sci. U. S. A., 98
C. Peters (2001)
Trans-complex formation by proteolipid channels in the terminal phase of membrane fusionNature, 409
H. Arai (1988)
Topography and subunit stoichiometry of the coated vesicle proton pump.J. Biol. Chem., 263
L. C. Gibson, G. Cadwallader, M. E. Finbow (2002)
Biochem. J., 366
X. Zhong, R. Malhotra, G. Guidotti (2000)
J. Biol. Chem., 275
C. T. Yamashiro (1990)
Mol. Cell. Biol., 10
A. Mayer (2002)
Membrane Fusion in Eukaryotic CellsAnnu. Rev. Cell Dev. Biol., 18
R. Hirata (1993)
VMA12 is essential for assembly of the vacuolar H(+)-ATPase subunits onto the vacuolar membrane in Saccharomyces cerevisiae.J. Biol. Chem., 268
H. Kim (2003)
Topology Models for 37 Saccharomyces cerevisiaeMembrane Proteins Based on C-terminal Reporter Fusions and PredictionsJ. Biol. Chem., 278
M. F. Manolson (1994)
STV1 gene encodes functional homologue of 95-kDa yeast vacuolar H(+)-ATPase subunit Vph1p.J. Biol. Chem., 269
P. M. Kane (1990)
Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H(+)-adenosine triphosphataseScience, 250
K. J. Hill (1995)
Vma22p Is a Novel Endoplasmic Reticulum-associated Protein Required for Assembly of the Yeast Vacuolar H+-ATPase ComplexJ. Biol. Chem., 270
K. J. Hill (1994)
Vma21p is a yeast membrane protein retained in the endoplasmic reticulum by a di-lysine motif and is required for the assembly of the vacuolar H(+)-ATPase complex.Mol. Biol. Cell, 5
R. A. Capaldi (2002)
Mechanism of the F1F0-type ATP synthase, a biological rotary motorTrends Biochem. Sci., 27
T. H. Stevens (1997)
STRUCTURE, FUNCTION AND REGULATION OF THE VACUOLAR (H+)-ATPaseAnnu. Rev. Cell Dev. Biol., 13
E. Vasilyeva (2000)
Cysteine Scanning Mutagenesis of the Noncatalytic Nucleotide Binding Site of the Yeast V-ATPaseJ. Biol. Chem., 275
K. Keenan Curtis (2002)
Novel Vacuolar H+-ATPase Complexes Resulting from Overproduction of Vma5p and Vma13pJ. Biol. Chem., 277
B. Powell (2000)
Molecular Characterization of the Yeast Vacuolar H+-ATPase Proton PoreJ. Biol. Chem., 275
C. Bauerle (1993)
The Saccharomyces cerevisiae VMA6 gene encodes the 36-kDa subunit of the vacuolar H(+)-ATPase membrane sectorJ. Biol. Chem., 268
W. Wickner (2002)
Yeast vacuoles and membrane fusion pathwaysEMBO J., 21
D. Halachmi, Y. Eilam (1993)
FEBS Lett., 316
H. Merzendorfer (1999)
A Novel Insect V-ATPase Subunit M9.7 Is Glycosylated ExtensivelyJ. Biol. Chem., 274
The yeast V-ATPase belongs to a family of V-type ATPases present in all eucaryotic organisms. In Saccharomyces cerevisiae the V-ATPase is localized to the membrane of the vacuole as well as the Golgi complex and endosomes. The V-ATPase brings about the acidification of these organelles by the transport of protons coupled to the hydrolysis of ATP. In yeast, the V-ATPase is composed of 13 subunits consisting of a catalytic V1 domain of peripherally associated proteins and a proton-translocating V0 domain of integral membrane proteins. The regulatory subunit, Vma13p, was the first V-ATPase subunit to have its crystal structure determined. In addition to proteins forming the functional V-ATPase complex, three ER-localized proteins facilitate the assembly of the V0 subunits following their translation and insertion into the membrane of the ER. Homologues of the Vma21p assembly factor have been identified in many higher eukaryotes supporting a ubiquitous assembly pathway for this important enzyme complex.
Journal of Bioenergetics and Biomembranes – Springer Journals
Published: Oct 5, 2004
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.