Access the full text.
Sign up today, get DeepDyve free for 14 days.
Sun Kim, T. Punshon, A. Lanzirotti, Liangtao Li, J. Alonso, J. Ecker, J. Kaplan, M. Guerinot (2006)
Localization of Iron in Arabidopsis Seed Requires the Vacuolar Membrane Transporter VIT1Science, 314
Michael Weber, E. Harada, C. Vess, E. Roepenack-Lahaye, S. Clemens (2004)
Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors.The Plant journal : for cell and molecular biology, 37 2
L.E. Williams, R.F. Mills (2005)
P(1B)-ATPases – an ancient family of transition metal pumps with diverse functions in plants, 10
Gabriel Schaaf, Annegret Honsbein, A. Meda, S. Kirchner, D. Wipf, N. Wirén (2006)
AtIREG2 Encodes a Tonoplast Transport Protein Involved in Iron-dependent Nickel Detoxification in Arabidopsis thaliana Roots*Journal of Biological Chemistry, 281
H. Wintz, T. Fox, Ying-Ying Wu, Victoria Feng, W. Chen, Hur-Song Chang, Tong Zhu, C. Vulpe (2003)
Expression Profiles of Arabidopsis thaliana in Mineral Deficiencies Reveal Novel Transporters Involved in Metal Homeostasis*Journal of Biological Chemistry, 278
A. Assunção, P. Martins, S. Folter, R. Vooijs, H. Schat, M. Aarts (2001)
Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens: Zinc transporters of Thlaspi caerulescensPlant Cell and Environment, 24
Markus Tamás, E. Martinoia (2006)
Molecular Biology of Metal Homeostasis and Detoxification
Miyoung Lee, Kiyoul Lee, Joohyun Lee, E. Noh, Youngsook Lee (2005)
AtPDR12 Contributes to Lead Resistance in Arabidopsis1Plant Physiology, 138
S. Clemens, M. Palmgren, U. Krämer (2002)
A long way ahead: understanding and engineering plant metal accumulation.Trends in plant science, 7 7
Delphine Gendre, P. Czernic, G. Conéjéro, Katia Pianelli, J. Briat, M. Lebrun, S. Mari (2006)
TcYSL3, a member of the YSL gene family from the hyper-accumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter.The Plant journal : for cell and molecular biology, 49 1
E. Delhaize, T. Kataoka, D. Hebb, R. White, P. Ryan (2003)
Genes Encoding Proteins of the Cation Diffusion Facilitator Family That Confer Manganese Tolerance Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.009134.The Plant Cell Online, 15
Anne-Garlonn Desbrosses-Fonrouge, Katrin Voigt, A. Schröder, Stéphanie Arrivault, S. Thomine, U. Krämer (2005)
Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulationFEBS Letters, 579
R. Mills, A. Francini, Pedro Rocha, Paul Baccarini, Melissa Aylett, G. Krijger, L. Williams (2005)
The plant P1B‐type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levelsFEBS Letters, 579
Clara Cohen, D. Garvin, L. Kochian (2004)
Kinetic properties of a micronutrient transporter from Pisum sativum indicate a primary function in Fe uptake from the soilPlanta, 218
A. Papoyan, L. Kochian (2004)
Identification of Thlaspi caerulescens Genes That May Be Involved in Heavy Metal Hyperaccumulation and Tolerance. Characterization of a Novel Heavy Metal Transporting ATPase1Plant Physiology, 136
Stéphanie Arrivault, Toralf Senger, U. Krämer (2006)
The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply.The Plant journal : for cell and molecular biology, 46 5
Caryn Outten, and O'Halloran (2001)
Femtomolar Sensitivity of Metalloregulatory Proteins Controlling Zinc HomeostasisScience, 292
A. Assunção, P. Martins, S. Folter, R. Vooijs, H. Schat, M. Aarts (2001)
Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescensPlant Cell and Environment, 24
S. Puig, Nuria Andrés-Colás, Antoni Garcia-Molina, L. Peñarrubia (2007)
Copper and iron homeostasis in Arabidopsis: responses to metal deficiencies, interactions and biotechnological applications.Plant, cell & environment, 30 3
L. Green, E. Rogers (2004)
FRD3 Controls Iron Localization in Arabidopsis1Plant Physiology, 136
E.E. Rogers, M.L. Guerinot (2002)
FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis, 14
U. Krämer (2005)
MTP1 mops up excess zinc in Arabidopsis cells.Trends in plant science, 10 7
B. Waters, H. Chu, Raymond Didonato, Louis Roberts, R. Eisley, Brett Lahner, D. Salt, E. Walker (2006)
Mutations in Arabidopsis Yellow Stripe-Like1 and Yellow Stripe-Like3 Reveal Their Roles in Metal Ion Homeostasis and Loading of Metal Ions in Seeds1Plant Physiology, 141
M. Hanikenne, U. Krämer, V. Demoulin, D. Baurain (2005)
A Comparative Inventory of Metal Transporters in the Green Alga Chlamydomonas reinhardtii and the Red Alga Cyanidioschizon merolae1[w]Plant Physiology, 137
E. Delhaize, T. Kataoka, D.M. Hebb, R.G. White, P.R. Ryan (2003)
Genes encoding proteins of the cation diffusion facilitator family that confer manganese tolerance, 15
J. Pittman (2005)
Managing the manganese: molecular mechanisms of manganese transport and homeostasis.The New phytologist, 167 3
A. Mckie, P. Marciani, A. Rolfs, K. Brennan, Kristina Wehr, D. Barrow, S. Miret, A. Bomford, T. Peters, F. Farzaneh, M. Hediger, M. Hentze, R. Simpson (2000)
A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation.Molecular cell, 5 2
D. Blaudez, A. Kohler, F. Martin, D. Sanders, M. Chalot (2003)
Poplar Metal Tolerance Protein 1 Confers Zinc Tolerance and Is an Oligomeric Vacuolar Zinc Transporter with an Essential Leucine Zipper Motif Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.017541.The Plant Cell Online, 15
Yakov Paz, A. Katz, U. Pick (2007)
A Multicopper Ferroxidase Involved in Iron Binding to Transferrins in Dunaliella salina Plasma Membranes*Journal of Biological Chemistry, 282
Nuria Andrés-Colás, Vicente Sancenon, Susana Rodríguez-Navarro, S. Mayo, D. Thiele, J. Ecker, S. Puig, L. Peñarrubia (2006)
The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots.The Plant journal : for cell and molecular biology, 45 2
D. Williams (1991)
The Biological Chemistry of the Elements
Elizabeth Colangelo, M. Guerinot (2006)
Put the metal to the petal: metal uptake and transport throughout plants.Current opinion in plant biology, 9 3
J. Hammond, Helen Bowen, P. White, V. Mills, K. Pyke, A. Baker, S. Whiting, S. May, M. Broadley (2006)
A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes.The New phytologist, 170 2
Nicole Pence, P. Larsen, S. Ebbs, D. Letham, M. Lasat, D. Garvin, D. Eide, L. Kochian (2000)
The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens.Proceedings of the National Academy of Sciences of the United States of America, 97 9
D. Callahan, A. Baker, S. Kolev, A. Wedd (2005)
Metal ion ligands in hyperaccumulating plantsJBIC Journal of Biological Inorganic Chemistry, 11
Katia Pianelli, S. Mari, L. Marquès, M. Lebrun, P. Czernic (2005)
Nicotianamine Over-accumulation Confers Resistance to Nickel in Arabidopsis thalianaTransgenic Research, 14
Ivan Baxter, J. Tchieu, M. Sussman, M. Boutry, M. Palmgren, M. Gribskov, J. Harper, K. Axelsen (2003)
Genomic Comparison of P-Type ATPase Ion Pumps in Arabidopsis and Rice1Plant Physiology, 132
E. Rogers, M. Guerinot (2002)
FRD3, a Member of the Multidrug and Toxin Efflux Family, Controls Iron Deficiency Responses in Arabidopsis Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.001495.The Plant Cell Online, 14
Korshunova Yo, D. Eide, Clark Wg, M. Guerinot, H. Pakrasi (1999)
The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate rangePlant Molecular Biology, 40
L. Finney, T. O’Halloran (2003)
Transition Metal Speciation in the Cell: Insights from the Chemistry of Metal Ion ReceptorsScience, 300
Gabriel Schaaf, A. Schikora, J. Häberle, G. Vert, U. Ludewig, J. Briat, C. Curie, N. Wirén (2005)
A putative function for the arabidopsis Fe-Phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis.Plant & cell physiology, 46 5
L. Williams, R. Mills (2005)
P(1B)-ATPases--an ancient family of transition metal pumps with diverse functions in plants.Trends in plant science, 10 10
M. Jean, A. Schikora, S. Mari, J. Briat, C. Curie (2005)
A loss-of-function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading.The Plant journal : for cell and molecular biology, 44 5
E. Eren, J. Argüello (2004)
Arabidopsis HMA2, a Divalent Heavy Metal-Transporting PIB-Type ATPase, Is Involved in Cytoplasmic Zn2+ Homeostasis1Plant Physiology, 136
Vicente Sancenon, S. Puig, I. Mateu-andrés, Eavan Dorcey, D. Thiele, L. Peñarrubia (2004)
The Arabidopsis Copper Transporter COPT1 Functions in Root Elongation and Pollen Development*Journal of Biological Chemistry, 279
Nicholas Grossoehme, S. Akilesh, M. Guerinot, D. Wilcox (2006)
Metal-binding thermodynamics of the histidine-rich sequence from the metal-transport protein IRT1 of Arabidopsis thaliana.Inorganic chemistry, 45 21
Viviane Lanquar, F. Lelièvre, S. Bolte, C. Hamès, C. Alcon, D. Neumann, G. Vansuyt, C. Curie, A. Schröder, Ute Krämer, H. Barbier-Brygoo, S. Thomine (2005)
Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low ironThe EMBO Journal, 24
N. Grotz, T. Fox, E. Connolly, Walter Park, M. Guerinot, D. Eide (1998)
Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency.Proceedings of the National Academy of Sciences of the United States of America, 95 12
D. Blaudez, A. Kohler, F. Martin, D. Sanders, M. Chalot (2003)
Poplar metal tolerance protein 1 (MTP1) confers zinc tolerance and is an oligomeric vacuolar zinc transporter with an essential leucine zipper motif, 15
N. Grotz, M. Guerinot (2006)
Molecular aspects of Cu, Fe and Zn homeostasis in plants.Biochimica et biophysica acta, 1763 7
V. Filatov, J. Dowdle, N. Smirnoff, B. Ford-Lloyd, H. Newbury, M. Macnair (2006)
Comparison of gene expression in segregating families identifies genes and genomic regions involved in a novel adaptation, zinc hyperaccumulationMolecular Ecology, 15
Judith Mortel, Laia Villanueva, H. Schat, J. Kwekkeboom, S. Coughlan, P. Moerland, E. Themaat, M. Koornneef, M. Aarts (2006)
Large Expression Differences in Genes for Iron and Zinc Homeostasis, Stress Response, and Lignin Biosynthesis Distinguish Roots of Arabidopsis thaliana and the Related Metal Hyperaccumulator Thlaspi caerulescens1[W]Plant Physiology, 142
D. Hussain, Michael Haydon, Yuwen Wang, E. Wong, S. Sherson, J. Young, J. Camakaris, J. Harper, C. Cobbett (2004)
P-Type ATPase Heavy Metal Transporters with Roles in Essential Zinc Homeostasis in ArabidopsisThe Plant Cell Online, 16
S. Fontaine, Jeanette Quinn, S. Nakamoto, M. Page, Vera Göhre, J. Moseley, J. Kropat, S. Merchant (2002)
Copper-Dependent Iron Assimilation Pathway in the Model Photosynthetic Eukaryote Chlamydomonas reinhardtiiEukaryotic Cell, 1
Chunyuan Huang, S. Barker, P. Langridge, F. Smith, R. Graham (2000)
Zinc deficiency up-regulates expression of high-affinity phosphate transporter genes in both phosphate-sufficient and -deficient barley roots.Plant physiology, 124 1
Yoshihiro Kobae, T. Uemura, Masa Sato, M. Ohnishi, T. Mimura, T. Nakagawa, M. Maeshima (2004)
Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis.Plant & cell physiology, 45 12
A. Changela, Kui Chen, Yi Xue, J. Holschen, Caryn Outten, T. O’Halloran, A. Mondragón (2003)
Molecular Basis of Metal-Ion Selectivity and Zeptomolar Sensitivity by CueRScience, 301
Tanja Bloss, S. Clemens, D. Nies (2002)
Characterization of the ZAT1p zinc transporter from Arabidopsis thaliana in microbial model organisms and reconstituted proteoliposomesPlanta, 214
S. Merchant, B. Dreyfuss (1998)
POSTTRANSLATIONAL ASSEMBLY OF PHOTOSYNTHETIC METALLOPROTEINS.Annual review of plant physiology and plant molecular biology, 49
P. Kiranmayi, P. Mohan (2006)
Metal Transportome of Neurospora crassaIn silico biology, 6 3
T. Durrett, W. Gassmann, E. Rogers (2007)
The FRD3-Mediated Efflux of Citrate into the Root Vasculature Is Necessary for Efficient Iron Translocation1[OA]Plant Physiology, 144
A. Trampczynska, C. Böttcher, S. Clemens (2006)
The transition metal chelator nicotianamine is synthesized by filamentous fungiFEBS Letters, 580
T. Sondergaard, A. Schulz, M. Palmgren (2004)
Energization of Transport Processes in Plants. Roles of the Plasma Membrane H+-ATPase1Plant Physiology, 136
Gabriel Schaaf, U. Ludewig, B. Erenoglu, S. Mori, T. Kitahara, N. Wirén (2004)
ZmYS1 Functions as a Proton-coupled Symporter for Phytosiderophore- and Nicotianamine-chelated Metals*Journal of Biological Chemistry, 279
S. Mari, Delphine Gendre, Katia Pianelli, L. Ouerdane, R. Lobinski, J. Briat, M. Lebrun, P. Czernic (2006)
Root-to-shoot long-distance circulation of nicotianamine and nicotianamine-nickel chelates in the metal hyperaccumulator Thlaspi caerulescens.Journal of experimental botany, 57 15
Salah Abdel‐Ghany, Patricia Müller-Moulé, K. Niyogi, M. Pilon, T. Shikanai (2005)
Two P-Type ATPases Are Required for Copper Delivery in Arabidopsis thaliana ChloroplastsThe Plant Cell Online, 17
S. Thomine, F. Lelièvre, E. Debarbieux, J. Schroeder, H. Barbier-Brygoo (2003)
AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency.The Plant journal : for cell and molecular biology, 34 5
Huai-chih Chiang, J. Lo, K. Yeh (2006)
Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray.Environmental science & technology, 40 21
D. Dräger, Anne-Garlonn Desbrosses-Fonrouge, C. Krach, A. Chardonnens, R. Meyer, P. Saumitou-Laprade, U. Krämer (2004)
Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels.The Plant journal : for cell and molecular biology, 39 3
A. Gravot, Aurélie Lieutaud, Frédéric Verret, P. Auroy, Alain Vavasseur, P. Richaud (2004)
AtHMA3, a plant P1B‐ATPase, functions as a Cd/Pb transporter in yeastFEBS Letters, 561
S. Clemens (2006)
Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants.Biochimie, 88 11
C. Bernard, N. Roosens, P. Czernic, M. Lebrun, N. Verbruggen (2004)
A novel CPx‐ATPase from the cadmium hyperaccumulator Thlaspi caerulescensFEBS Letters, 569
Ina Talke, M. Hanikenne, U. Krämer (2006)
Zinc-Dependent Global Transcriptional Control, Transcriptional Deregulation, and Higher Gene Copy Number for Genes in Metal Homeostasis of the Hyperaccumulator Arabidopsis halleri1[W]Plant Physiology, 142
A. Baker, R. Reeves, A. Hajar (1994)
Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae).The New phytologist, 127 1
I. Raskin, B. Ensley (2000)
Phytoremediation of toxic metals : using plants to clean up the environment
S. Puig, Helena Mira, Eavan Dorcey, Vicente Sancenon, Nuria Andrés-Colás, Antoni Garcia-Molina, Jason Burkhead, K. Gogolin, Salah Abdel‐Ghany, D. Thiele, J. Ecker, M. Pilon, L. Peñarrubia (2007)
Higher plants possess two different types of ATX1-like copper chaperones.Biochemical and biophysical research communications, 354 2
M. Lasat, Nicole Pence, D. Garvin, S. Ebbs, L. Kochian (2000)
Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens.Journal of experimental botany, 51 342
Frédéric Verret, A. Gravot, P. Auroy, N. Leonhardt, Pascale David, L. Nussaume, Alain Vavasseur, P. Richaud (2004)
Overexpression of AtHMA4 enhances root‐to‐shoot translocation of zinc and cadmium and plant metal toleranceFEBS Letters, 576
T. O’Halloran, V. Culotta (2000)
Metallochaperones, an Intracellular Shuttle Service for Metal Ions*The Journal of Biological Chemistry, 275
Michael Haydon, C. Cobbett (2007)
A Novel Major Facilitator Superfamily Protein at the Tonoplast Influences Zinc Tolerance and Accumulation in Arabidopsis1[C][W][OA]Plant Physiology, 143
M. Lasat, Alan Baker, L. Kochian (1998)
Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation in thlaspi caerulescensPlant physiology, 118 3
Catherine Curie, Jose Alonso, Marie Jean, Joseph Ecker, J. Briat (2000)
Involvement of NRAMP1 from Arabidopsis thaliana in iron transport.The Biochemical journal, 347 Pt 3
Martina Becher, Ina Talke, L. Krall, U. Krämer (2004)
Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri.The Plant journal : for cell and molecular biology, 37 2
Transition metal transporters are of central importance in the plant metal homeostasis network which maintains internal metal concentrations within physiological limits. An overview is given of the functions of known transition metal transporters in the context of the unique chemical properties of their substrates. The modifications of the metal homeostasis network associated with the adaptation to an extreme metalliferous environment are illustrated in two Brassicaceae metal hyperaccumulator model plants based on cross‐species transcriptomics studies. In a comparison between higher plants and unicellular algae, hypotheses are generated for evolutionary changes in metal transporter complements associated with the transition to multicellularity.
Febs Letters – Wiley
Published: May 25, 2007
Keywords: ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.