Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Intramolecular migration of amide hydrogens in protonated peptides upon collisional activation.

Intramolecular migration of amide hydrogens in protonated peptides upon collisional activation. Presently different opinions exist as to the degree of scrambling of amide hydrogens in gaseous protonated peptides and proteins upon collisional activation in tandem mass spectrometry experiments. This unsettled controversy is not trivial, since only a very low degree of scrambling is tolerable if collision-induced dissociation (CID) should provide reliable site-specific information from (1)H/(2)H exchange experiments. We have explored a series of unique, regioselectively deuterium-labeled peptides as model systems to probe for intramolecular amide hydrogen migration under low-energy collisional activation in an orthogonal quadrupole time-of-flight electrospray ionization (Q-TOF ESI) mass spectrometer. These peptides contain a C-terminal receptor-binding sequence and an N-terminal nonbinding region. When the peptides form a receptor complex, the amide hydrogens of the interacting sequences are protected against exchange with the solvent, while the amide hydrogens of the nonbinding sequences exchange rapidly with the solvent. We have utilized such long-lived complexes to generate peptides labeled with deuterium in either the binding or nonbinding region, and the expected regioselectivity of this labeling was confirmed after pepsin proteolysis. CID of such deuterated peptides, [M + 2H](2+), yielded fragment ions (b- and y-ions) having a deuterium content that resemble the theoretical values calculated for 100% scrambling. Thus, complete randomization of all hydrogen atoms attached to nitrogen and oxygen occurs in the gaseous peptide ion prior to its dissociation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the American Chemical Society Pubmed

Intramolecular migration of amide hydrogens in protonated peptides upon collisional activation.

Journal of the American Chemical Society , Volume 127 (8): -2691 – Apr 22, 2005

Intramolecular migration of amide hydrogens in protonated peptides upon collisional activation.


Abstract

Presently different opinions exist as to the degree of scrambling of amide hydrogens in gaseous protonated peptides and proteins upon collisional activation in tandem mass spectrometry experiments. This unsettled controversy is not trivial, since only a very low degree of scrambling is tolerable if collision-induced dissociation (CID) should provide reliable site-specific information from (1)H/(2)H exchange experiments. We have explored a series of unique, regioselectively deuterium-labeled peptides as model systems to probe for intramolecular amide hydrogen migration under low-energy collisional activation in an orthogonal quadrupole time-of-flight electrospray ionization (Q-TOF ESI) mass spectrometer. These peptides contain a C-terminal receptor-binding sequence and an N-terminal nonbinding region. When the peptides form a receptor complex, the amide hydrogens of the interacting sequences are protected against exchange with the solvent, while the amide hydrogens of the nonbinding sequences exchange rapidly with the solvent. We have utilized such long-lived complexes to generate peptides labeled with deuterium in either the binding or nonbinding region, and the expected regioselectivity of this labeling was confirmed after pepsin proteolysis. CID of such deuterated peptides, [M + 2H](2+), yielded fragment ions (b- and y-ions) having a deuterium content that resemble the theoretical values calculated for 100% scrambling. Thus, complete randomization of all hydrogen atoms attached to nitrogen and oxygen occurs in the gaseous peptide ion prior to its dissociation.

Loading next page...
 
/lp/pubmed/intramolecular-migration-of-amide-hydrogens-in-protonated-peptides-zQLfvl1dRO

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0002-7863
DOI
10.1021/ja043789c
pmid
15725037

Abstract

Presently different opinions exist as to the degree of scrambling of amide hydrogens in gaseous protonated peptides and proteins upon collisional activation in tandem mass spectrometry experiments. This unsettled controversy is not trivial, since only a very low degree of scrambling is tolerable if collision-induced dissociation (CID) should provide reliable site-specific information from (1)H/(2)H exchange experiments. We have explored a series of unique, regioselectively deuterium-labeled peptides as model systems to probe for intramolecular amide hydrogen migration under low-energy collisional activation in an orthogonal quadrupole time-of-flight electrospray ionization (Q-TOF ESI) mass spectrometer. These peptides contain a C-terminal receptor-binding sequence and an N-terminal nonbinding region. When the peptides form a receptor complex, the amide hydrogens of the interacting sequences are protected against exchange with the solvent, while the amide hydrogens of the nonbinding sequences exchange rapidly with the solvent. We have utilized such long-lived complexes to generate peptides labeled with deuterium in either the binding or nonbinding region, and the expected regioselectivity of this labeling was confirmed after pepsin proteolysis. CID of such deuterated peptides, [M + 2H](2+), yielded fragment ions (b- and y-ions) having a deuterium content that resemble the theoretical values calculated for 100% scrambling. Thus, complete randomization of all hydrogen atoms attached to nitrogen and oxygen occurs in the gaseous peptide ion prior to its dissociation.

Journal

Journal of the American Chemical SocietyPubmed

Published: Apr 22, 2005

There are no references for this article.