Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Candida antartica lipase B catalyzed polycaprolactone synthesis: effects of organic media and temperature.

Candida antartica lipase B catalyzed polycaprolactone synthesis: effects of organic media and... Engineering of the reaction medium and study of an expanded range of reaction temperatures were carried out in an effort to positively influence the outcome of Novozyme-435 (immobilized Lipase B from Candida antarctica) catalyzed epsilon-CL polymerizations. A series of solvents including acetonitrile, dioxane, tetrahydrofuran, chloroform, butyl ether, isopropyl ether, isooctane, and toluene (log P from -1.1 to 4.5) were evaluated at 70 degrees C. Statistically (ANOVA), two significant regions were observed. Solvents having log P values from -1.1 to 0.49 showed low propagation rates (< or = 30% epsilon-CL conversion in 4 h) and gave products of short chain length (Mn < or = 5200 g/mol). In contrast, solvents with log P values from 1.9 to 4.5 showed enhanced propagation rates and afforded polymers of higher molecular weight (Mn = 11,500-17,000 g/mol). Toluene, a preferred solvent for this work, was studied at epsilon-CL to toluene (wt/vol) ratios from 1:1 to 10:1. The ratio 1:2 was selected since, for polymerizations at 70 degrees C, 0.3 mL of epsilon-CL and 4 h, gave high monomer conversions and Mn values (approximately 85% and approximately 17,000 g/mol, respectively). Increasing the scale of the reaction from 0.3 to 10 mL of CL resulted in a similar isolated product yield, but the Mn increased from 17,200 to 44,800 g/mol. Toluene appeared to help stabilize Novozyme-435 so that lipase-catalyzed polymerizations could be conducted effectively at 90 degrees C. For example, within only 2 h at 90 degrees C (toluene-d8 to epsilon-CL, 5:1, approximately 1% protein), the % monomer conversion reached approximately 90%. Also, the controlled character of these polymerizations as a function of reaction temperature was evaluated. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biomacromolecules Pubmed

Candida antartica lipase B catalyzed polycaprolactone synthesis: effects of organic media and temperature.

Biomacromolecules , Volume 1 (1): -124 – Jan 17, 2002

Candida antartica lipase B catalyzed polycaprolactone synthesis: effects of organic media and temperature.


Abstract

Engineering of the reaction medium and study of an expanded range of reaction temperatures were carried out in an effort to positively influence the outcome of Novozyme-435 (immobilized Lipase B from Candida antarctica) catalyzed epsilon-CL polymerizations. A series of solvents including acetonitrile, dioxane, tetrahydrofuran, chloroform, butyl ether, isopropyl ether, isooctane, and toluene (log P from -1.1 to 4.5) were evaluated at 70 degrees C. Statistically (ANOVA), two significant regions were observed. Solvents having log P values from -1.1 to 0.49 showed low propagation rates (< or = 30% epsilon-CL conversion in 4 h) and gave products of short chain length (Mn < or = 5200 g/mol). In contrast, solvents with log P values from 1.9 to 4.5 showed enhanced propagation rates and afforded polymers of higher molecular weight (Mn = 11,500-17,000 g/mol). Toluene, a preferred solvent for this work, was studied at epsilon-CL to toluene (wt/vol) ratios from 1:1 to 10:1. The ratio 1:2 was selected since, for polymerizations at 70 degrees C, 0.3 mL of epsilon-CL and 4 h, gave high monomer conversions and Mn values (approximately 85% and approximately 17,000 g/mol, respectively). Increasing the scale of the reaction from 0.3 to 10 mL of CL resulted in a similar isolated product yield, but the Mn increased from 17,200 to 44,800 g/mol. Toluene appeared to help stabilize Novozyme-435 so that lipase-catalyzed polymerizations could be conducted effectively at 90 degrees C. For example, within only 2 h at 90 degrees C (toluene-d8 to epsilon-CL, 5:1, approximately 1% protein), the % monomer conversion reached approximately 90%. Also, the controlled character of these polymerizations as a function of reaction temperature was evaluated.

Loading next page...
 
/lp/pubmed/candida-antartica-lipase-b-catalyzed-polycaprolactone-synthesis-zT44YaJUg9

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
1525-7797
DOI
10.1021/bm990510p
pmid
11709835

Abstract

Engineering of the reaction medium and study of an expanded range of reaction temperatures were carried out in an effort to positively influence the outcome of Novozyme-435 (immobilized Lipase B from Candida antarctica) catalyzed epsilon-CL polymerizations. A series of solvents including acetonitrile, dioxane, tetrahydrofuran, chloroform, butyl ether, isopropyl ether, isooctane, and toluene (log P from -1.1 to 4.5) were evaluated at 70 degrees C. Statistically (ANOVA), two significant regions were observed. Solvents having log P values from -1.1 to 0.49 showed low propagation rates (< or = 30% epsilon-CL conversion in 4 h) and gave products of short chain length (Mn < or = 5200 g/mol). In contrast, solvents with log P values from 1.9 to 4.5 showed enhanced propagation rates and afforded polymers of higher molecular weight (Mn = 11,500-17,000 g/mol). Toluene, a preferred solvent for this work, was studied at epsilon-CL to toluene (wt/vol) ratios from 1:1 to 10:1. The ratio 1:2 was selected since, for polymerizations at 70 degrees C, 0.3 mL of epsilon-CL and 4 h, gave high monomer conversions and Mn values (approximately 85% and approximately 17,000 g/mol, respectively). Increasing the scale of the reaction from 0.3 to 10 mL of CL resulted in a similar isolated product yield, but the Mn increased from 17,200 to 44,800 g/mol. Toluene appeared to help stabilize Novozyme-435 so that lipase-catalyzed polymerizations could be conducted effectively at 90 degrees C. For example, within only 2 h at 90 degrees C (toluene-d8 to epsilon-CL, 5:1, approximately 1% protein), the % monomer conversion reached approximately 90%. Also, the controlled character of these polymerizations as a function of reaction temperature was evaluated.

Journal

BiomacromoleculesPubmed

Published: Jan 17, 2002

There are no references for this article.