S. Torquato (2002)
Random Heterogeneous Materials
B Adams, GR Canova, A Molinari (1989)
A statistical formulation of viscoplastic behavior in heterogeneous polycrystalsTextures Microstruct, 11
Ruoqian Liu, Abhishek Kumar, Zhengzhang Chen, Ankit Agrawal, V. Sundararaghavan, A. Choudhary (2015)
A predictive machine learning approach for microstructure optimization and materials designScientific Reports, 5
Yu Liu, M. Greene, Wei Chen, D. Dikin, Wing Liu (2013)
Computational microstructure characterization and reconstruction for stochastic multiscale material designComput. Aided Des., 45
D. Fullwood, S. Niezgoda, B. Adams, S. Kalidindi (2012)
Microstructure Sensitive Design for Performance Optimization
Ruoqian Liu, Ankit Agrawal, W. Liao, A. Choudhary, M. Graef (2016)
Materials discovery: Understanding polycrystals from large-scale electron patterns2016 IEEE International Conference on Big Data (Big Data)
Xiao-Yi Zhou, P. Gosling, C. Pearce, L. Kaczmarczyk, Z. Ullah (2016)
Perturbation-based stochastic multi-scale computational homogenization method for the determination of the effective properties of composite materials with random propertiesComputer Methods in Applied Mechanics and Engineering, 300
S. Niezgoda, Yuksel Yabansu, S. Kalidindi (2011)
Understanding and visualizing microstructure and microstructure variance as a stochastic processActa Materialia, 59
T. Fast, S. Kalidindi (2011)
Formulation and calibration of higher-order elastic localization relationships using the MKS approachActa Materialia, 59
C. Suh, K. Rajan (2009)
Data mining and informatics for crystal chemistry: establishing measurement techniques for mapping structure–property relationships
H. Garmestani, S. Lin, B. Adams, S. Ahzi (2001)
Statistical continuum theory for large plastic deformation of polycrystalline materialsJournal of The Mechanics and Physics of Solids, 49
H. Senderowitz, A. Tropsha (2018)
Materials InformaticsJournal of chemical information and modeling, 58 12
(2001)
ABAQUS/standard User's Manual
E. Kröner (1977)
Bounds for effective elastic moduli of disordered materialsJournal of The Mechanics and Physics of Solids, 25
S. Niezgoda, A. Kanjarla, S. Kalidindi (2013)
Novel microstructure quantification framework for databasing, visualization, and analysis of microstructure dataIntegrating Materials and Manufacturing Innovation, 2
Jitesh Panchal, S. Kalidindi, D. McDowell (2013)
Key computational modeling issues in Integrated Computational Materials EngineeringComput. Aided Des., 45
H. Bhadeshia, R. Dimitriu, S. Forsik, J. Pak, J. Ryu (2009)
Performance of neural networks in materials scienceMaterials Science and Technology, 25
Yann LeCun, Yoshua Bengio, Geoffrey Hinton (2015)
Deep LearningNature, 521
J. MacQueen (1967)
Some methods for classification and analysis of multivariate observations, 1
G. Landi, S. Kalidindi (2010)
Thermo-Elastic Localization Relationships for Multi-Phase CompositesCmc-computers Materials & Continua, 16
A. Cruzado, B. Gan, M. Jiménez, D. Barba, K. Ostolaza, A. Linaza, J. Molina-Aldareguia, J. Llorca, J. Segurado (2015)
Multiscale modeling of the mechanical behavior of IN718 superalloy based on micropillar compression and computational homogenizationActa Materialia, 98
K. Gopalakrishnan, Ankit Agrawal, H. Ceylan, Sunghwan Kim, A. Choudhary (2013)
Knowledge discovery and data mining in pavement inverse analysisTransport, 28
K Rajan (2005)
Materials informaticsMater Today, 8
Yuksel Yabansu, P. Steinmetz, J. Hötzer, S. Kalidindi, B. Nestler (2017)
Extraction of reduced-order process-structure linkages from phase-field simulationsActa Materialia, 124
Atsuto Seko, T. Maekawa, Koji Tsuda, I. Tanaka (2013)
Machine learning with systematic density-functional theory calculations: Application to melting temperatures of single- and binary-component solidsPhysical Review B, 89
B. Falissard (2011)
About Statistical Modelling
Ankit Agrawal, Parijat Deshpande, A. Çeçen, G. Basavarsu, A. Choudhary, S. Kalidindi (2014)
Exploration of data science techniques to predict fatigue strength of steel from composition and processing parametersIntegrating Materials and Manufacturing Innovation, 3
Ruoqian Liu, Yuksel Yabansu, Ankit Agrawal, S. Kalidindi, A. Choudhary (2015)
Machine learning approaches for elastic localization linkages in high-contrast composite materialsIntegrating Materials and Manufacturing Innovation, 4
T. Fast, S. Niezgoda, S. Kalidindi (2011)
A new framework for computationally efficient structure–structure evolution linkages to facilitate high-fidelity scale bridging in multi-scale materials modelsActa Materialia, 59
S. Kalidindi, G. Landi, D. Fullwood (2008)
Spectral representation of higher-order localization relationships for elastic behavior of polycrystalline cubic materialsActa Materialia, 56
Adam Gagorik, B. Savoie, N. Jackson, Ankit Agrawal, A. Choudhary, M. Ratner, G. Schatz, K. Kohlstedt (2017)
Improved Scaling of Molecular Network Calculations: The Emergence of Molecular Domains.The journal of physical chemistry letters, 8 2
B. Meredig, Amit Agrawal, S. Kirklin, J. Saal, J. Doak, Alan Thompson, Kunpeng Zhang, A. Choudhary, C. Wolverton (2014)
Combinatorial screening for new materials in unconstrained composition space with machine learningPhysical Review B, 89
H. Alharbi, G. Landi, S. Kalidindi (2012)
Multi-scale modeling of the elastic response of a structural component made from a composite material using the materials knowledge systemModelling and Simulation in Materials Science and Engineering, 20
M. Aitkin, Brian Francis, J. Hinde, Ross Darnell (2009)
Statistical Modelling in R
Agrawal Ankit, Meredig Bryce, Wolverton Chris, C. Alok (2016)
A Formation Energy Predictor for Crystalline Materials Using Ensemble Data Mining, 2016
Logan Ward, Rosanne Liu, Amar Krishna, V. Hegde, Ankit Agrawal, A. Choudhary, C. Wolverton (2016)
Accurate Models of Formation Enthalpy Created using Machine Learning and Voronoi TessellationsBulletin of the American Physical Society, 2016
Liviu Panait, S. Luke (2005)
Cooperative Multi-Agent Learning: The State of the ArtAutonomous Agents and Multi-Agent Systems, 11
Ankit Agrawal, A. Choudhary (2016)
Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials scienceAPL Materials, 4
A. Furmanchuk, Ankit Agrawal, A. Choudhary (2016)
Predictive analytics for crystalline materials: bulk modulusRSC Advances, 6
Ruoqian Liu, Ankit Agrawal, W. Liao, A. Choudhary, Zhengzhang Chen (2015)
Pruned search: A machine learning based meta-heuristic approach for constrained continuous optimization2015 Eighth International Conference on Contemporary Computing (IC3)
Bruno Silva, Eduardo Basso, A. Bazzan, P. Engel (2006)
Dealing with non-stationary environments using context detectionProceedings of the 23rd international conference on Machine learning
Akash Gupta, A. Çeçen, S. Goyal, Amarendra Singh, S. Kalidindi (2015)
Structure–property linkages using a data science approach: Application to a non-metallic inclusion/steel composite systemActa Materialia, 91
D. Fullwood, S. Niezgoda, S. Kalidindi (2008)
Microstructure reconstructions from 2-point statistics using phase-recovery algorithmsActa Materialia, 56
S. Torquato, Hw Haslach (2005)
Random Heterogeneous Materials: Microstructure and Macroscopic Properties
J. Dalsin, P. Messersmith (2005)
Bioinspired antifouling polymersMaterials Today, 8
Brent Adams, Gilles Canova, Alain Molinari (1989)
A STATISTICAL FORMULATION OF VISCOPLASTIC BEHAVIOR IN HETEROGENEOUS POLYCRYSTALSTexture, Stress, and Microstructure, 11
Logan Ward, Ankit Agrawal, A. Choudhary, C. Wolverton (2016)
A General-Purpose Machine Learning Framework for Predicting Properties of Inorganic MaterialsarXiv: Materials Science
P. Steinmetz, Yuksel Yabansu, J. Hötzer, Marcus Jainta, B. Nestler, S. Kalidindi (2016)
Analytics for microstructure datasets produced by phase-field simulationsActa Materialia, 103
S. Torquato (2002)
STATISTICAL DESCRIPTION OF MICROSTRUCTURESAnnual Review of Materials Research, 32
G. Landi, S. Niezgoda, S. Kalidindi (2010)
Multi-scale modeling of elastic response of three-dimensional voxel-based microstructure datasets using novel DFT-based knowledge systemsActa Materialia, 58
Fabian Pedregosa, G. Varoquaux, Alexandre Gramfort, V. Michel, B. Thirion, O. Grisel, Mathieu Blondel, Gilles Louppe, P. Prettenhofer, Ron Weiss, Ron Weiss, J. Vanderplas, Alexandre Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay (2011)
Scikit-learn: Machine Learning in PythonArXiv, abs/1201.0490
C Suh, K Rajan (2009)
Invited review: data mining and informatics for crystal chemistry: establishing measurement techniques for mapping structure–property relationshipsMater Sci Technol, 25
D. Fullwood, B. Adams, S. Kalidindi (2008)
A strong contrast homogenization formulation for multi-phase anisotropic materialsJournal of The Mechanics and Physics of Solids, 56
P. Øren, S. Bakke (2002)
Process Based Reconstruction of Sandstones and Prediction of Transport PropertiesTransport in Porous Media, 46
N. Guo, Jidong Zhao (2016)
3D multiscale modeling of strain localization in granular mediaComputers and Geotechnics, 80
Ruoqian Liu, Ankit Agrawal, W. Liao, A. Choudhary (2016)
Deep Learning for Chemical Compound Stability Prediction
C. Fischer, K. Tibbetts, D. Morgan, G. Ceder (2006)
Predicting crystal structure by merging data mining with quantum mechanicsNature Materials, 5
E Kröner (1986)
Statistical modelling
Yuksel Yabansu, Dipen Patel, S. Kalidindi (2014)
Calibrated localization relationships for elastic response of polycrystalline aggregatesActa Materialia, 81
S. Curtarolo, D. Morgan, K. Persson, J. Rodgers, G. Ceder (2003)
Predicting crystal structures with data mining of quantum calculations.Physical review letters, 91 13
S. Kalidindi, A. Medford, D. McDowell (2016)
Vision for Data and Informatics in the Future Materials Innovation EcosystemJOM, 68
Yuksel Yabansu, S. Kalidindi (2015)
Representation and calibration of elastic localization kernels for a broad class of cubic polycrystalsActa Materialia, 94
G. Saheli, H. Garmestani, Brent Adams (2004)
Microstructure design of a two phase composite using two-point correlation functionsJournal of Computer-Aided Materials Design, 11
Ankit Agrawal, A. Choudhary (2016)
A Fatigue Strength Predictor for Steels Using Ensemble Data Mining: Steel Fatigue Strength PredictorProceedings of the 25th ACM International on Conference on Information and Knowledge Management
S. Kalidindi, S. Niezgoda, G. Landi, Shraddha Vachhani, T. Fast (2010)
A Novel Framework for Building Materials Knowledge SystemsCmc-computers Materials & Continua, 17
S. Nguyen, A. Tran-Le, M. Vu, Q. To, O. Douzane, T. Langlet (2016)
Modeling thermal conductivity of hemp insulation material: A multi-scale homogenization approachBuilding and Environment, 107
Parijat Deshpande, B. Gautham, A. Çeçen, S. Kalidindi, Ankit Agrawal, A. Choudhary (2013)
Application of Statistical and Machine Learning Techniques for Correlating Properties to Composition and Manufacturing Processes of Steels
A. Choudhury, Yuksel Yabansu, S. Kalidindi, A. Dennstedt (2016)
Quantification and classification of microstructures in ternary eutectic alloys using 2-point spatial correlations and principal component analysesActa Materialia, 110
The response of a composite material is the result of a complex interplay between the prevailing mechanics and the heterogenous structure at disparate spatial and temporal scales. Understanding and capturing the multiscale phenomena is critical for materials modeling and can be pursued both by physical simulation-based modeling as well as data-driven machine learning-based modeling. In this work, we build machine learning-based data models as surrogate models for approximating the microscale elastic response as a function of the material microstructure (also called the elastic localization linkage). In building these surrogate models, we particularly focus on understanding the role of contexts, as a link to the higher scale information that most evidently influences and determines the microscale response. As a result of context modeling, we find that machine learning systems with context awareness not only outperform previous best results, but also extend the parallelism of model training so as to maximize the computational efficiency.
Integrating Materials and Manufacturing Innovation – Springer Journals
Published: Mar 31, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.