Access the full text.
Sign up today, get DeepDyve free for 14 days.
M. Nonet, R. Young (1989)
Intragenic and extragenic suppressors of mutations in the heptapeptide repeat domain of Saccharomyces cerevisiae RNA polymerase II.Genetics, 123 4
S. McCracken, N. Fong, E. Rosonina, K. Yankulov, G. Brothers, D. Siderovski, A. Hessel, S. Foster, S. Shuman, D. Bentley (1997)
5'-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II.Genes & development, 11 24
C. Govind, H. Qiu, Daniel Ginsburg, Chun Ruan, Kimberly Hofmeyer, Cuihua Hu, V. Swaminathan, J. Workman, Bing Li, A. Hinnebusch (2010)
Phosphorylated Pol II CTD recruits multiple HDACs, including Rpd3C(S), for methylation-dependent deacetylation of ORF nucleosomes.Molecular cell, 39 2
(2010)
This study identifies how general transitions in the transcription process are coupled to changes in CTD phosphorylation
Fedor Kouzine, D. Levens, Laura Baranello (2014)
DNA topology and transcriptionNucleus, 5
Takayuki Nojima, Tomás Gomes, A. Grosso, H. Kimura, M. Dye, Somdutta Dhir, M. Carmo-Fonseca, N. Proudfoot (2015)
Mammalian NET-Seq Reveals Genome-wide Nascent Transcription Coupled to RNA ProcessingCell, 161
Zhuoyu Ni, Abbie Saunders, N. Fuda, Jie Yao, J. Suárez, W. Webb, J. Lis (2007)
P-TEFb Is Critical for the Maturation of RNA Polymerase II into Productive Elongation In VivoMolecular and Cellular Biology, 28
J. Corden (2013)
RNA polymerase II C-terminal domain: Tethering transcription to transcript and template.Chemical reviews, 113 11
L. Vasiljeva, Minkyu Kim, H. Mutschler, S. Buratowski, A. Meinhart (2008)
The Nrd1–Nab3–Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domainNature structural & molecular biology, 15
Tiaojiang Xiao, Hana Hall, Kelby Kizer, Yoichiro Shibata, M. Hall, C. Borchers, B. Strahl (2003)
Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast.Genes & development, 17 5
J. Hsin, J. Manley (2012)
The RNA polymerase II CTD coordinates transcription and RNA processing.Genes & development, 26 19
Rob Chapman, M. Heidemann, Corinna Hintermair, D. Eick (2008)
Molecular evolution of the RNA polymerase II CTD.Trends in genetics : TIG, 24 6
Kirsten Voss, I. Forné, Nicolas Descostes, Corinna Hintermair, Roland Schüller, M. Maqbool, M. Heidemann, A. Flatley, A. Imhof, M. Gut, I. Gut, E. Kremmer, J. Andrau, D. Eick (2015)
Site-specific methylation and acetylation of lysine residues in the C-terminal domain (CTD) of RNA polymerase IITranscription, 6
Ming Yu, Wenjing Yang, T. Ni, Zhanyun Tang, T. Nakadai, Jun Zhu, R. Roeder (2015)
RNA polymerase II–associated factor 1 regulates the release and phosphorylation of paused RNA polymerase IIScience, 350
Avinash Patel, Hyun Lee, L. Jawerth, Shovamayee Maharana, Marcus Jahnel, Marco Hein, S. Stoynov, J. Mahamid, Shambaditya Saha, Titus Franzmann, Andrej Pozniakovski, I. Poser, N. Maghelli, Loic Royer, Martin Weigert, E. Myers, S. Grill, D. Drechsel, A. Hyman, S. Alberti (2015)
A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease MutationCell, 162
A. Coletta, J. Pinney, D. Solís, James Marsh, S. Pettifer, T. Attwood (2010)
Low-complexity regions within protein sequences have position-dependent rolesBMC Systems Biology, 4
N. Krogan, J. Dover, Adam Wood, J. Schneider, Jonathan Heidt, Marry Boateng, K. Dean, Owen Ryan, A. Golshani, M. Johnston, J. Greenblatt, A. Shilatifard (2003)
The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation.Molecular cell, 11 3
S. Schroeder, B. Schwer, S. Shuman, D. Bentley (2000)
Dynamic association of capping enzymes with transcribing RNA polymerase II.Genes & development, 14 19
Hyunsuk Suh, S. Ficarro, Un-Beom Kang, Yujin Chun, J. Marto, S. Buratowski (2016)
Direct Analysis of Phosphorylation Sites on the Rpb1 C-Terminal Domain of RNA Polymerase II.Molecular cell, 61 2
Min Li, Xiaohua Xu, Yilun Liu (2011)
The Set2-RPB1 Interaction Domain of Human RECQ5 Is Important for Transcription-Associated Genome StabilityMolecular and Cellular Biology, 31
Marilyne Thiebaut, Elena Kisseleva-Romanova, Mathieu Rougemaille, J. Boulay, D. Libri (2006)
Transcription termination and nuclear degradation of cryptic unstable transcripts: a role for the nrd1-nab3 pathway in genome surveillance.Molecular cell, 23 6
B. Devaiah, B. Lewis, Natasha Cherman, M. Hewitt, B. Albrecht, P. Robey, K. Ozato, R. Sims, D. Singer (2012)
BRD4 is an atypical kinase that phosphorylates Serine2 of the RNA Polymerase II carboxy-terminal domainProceedings of the National Academy of Sciences, 109
C. Jeronimo, P. Collin, F. Robert (2016)
The RNA Polymerase II CTD: The Increasing Complexity of a Low-Complexity Protein Domain.Journal of molecular biology, 428 12
S. Fuchs, R. Laribee, B. Strahl (2009)
Protein modifications in transcription elongation.Biochimica et biophysica acta, 1789 1
W. Cho, N. Jayanth, Brian English, T. Inoue, J. Andrews, W. Conway, J. Grimm, J. Spille, L. Lavis, T. Lionnet, I. Cissé (2016)
RNA Polymerase II cluster dynamics predict mRNA output in living cellseLife, 5
B. Schwer, S. Shuman (2011)
Deciphering the RNA polymerase II CTD code in fission yeast.Molecular cell, 43 2
Diana Mitrea, R. Kriwacki (2016)
Phase separation in biology; functional organization of a higher orderCell Communication and Signaling : CCS, 14
Jeong‐Heon Lee, D. Skalnik (2007)
Wdr82 Is a C-Terminal Domain-Binding Protein That Recruits the Setd1A Histone H3-Lys4 Methyltransferase Complex to Transcription Start Sites of Transcribed Human GenesMolecular and Cellular Biology, 28
S. Yoh, Joseph Lucas, K. Jones (2008)
The Iws1:Spt6:CTD complex controls cotranscriptional mRNA biosynthesis and HYPB/Setd2-mediated histone H3K36 methylation.Genes & development, 22 24
Jiaxu Li, D. Moazed, S. Gygi (2002)
Association of the Histone Methyltransferase Set2 with RNA Polymerase II Plays a Role in Transcription Elongation*The Journal of Biological Chemistry, 277
I. Jonkers, Hojoong Kwak, J. Lis (2014)
Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exonseLife, 3
J. Zaborowska, Sylvain Egloff, Shona Murphy (2016)
The pol II CTD: new twists in the tailNature Structural &Molecular Biology, 23
T. Max, M. Søgaard, J. Svejstrup (2007)
Hyperphosphorylation of the C-terminal Repeat Domain of RNA Polymerase II Facilitates Dissociation of Its Complex with Mediator*Journal of Biological Chemistry, 282
D. Blazek, J. Kohoutek, K. Bartholomeeusen, Eric Johansen, Petra Hulinková, Zeping Luo, Peter Cimermancic, J. Ule, B. Peterlin (2011)
The Cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes.Genes & development, 25 20
Chwen-Huey Wu, Y. Yamaguchi, L. Benjamin, M. Horvat-Gordon, Jodi Washinsky, E. Enerly, J. Larsson, A. Lambertsson, H. Handa, D. Gilmour (2003)
NELF and DSIF cause promoter proximal pausing on the hsp70 promoter in Drosophila.Genes & development, 17 11
A. Seila, J. Calabrese, S. Levine, Gene Yeo, P. Rahl, Ryan Flynn, R. Young, P. Sharp (2008)
Divergent Transcription from Active PromotersScience, 322
Mai Sun, L. Larivière, S. Dengl, A. Mayer, P. Cramer (2010)
A Tandem SH2 Domain in Transcription Elongation Factor Spt6 Binds the Phosphorylated RNA Polymerase II C-terminal Repeat Domain (CTD)*The Journal of Biological Chemistry, 285
H. Ng, F. Robert, R. Young, K. Struhl (2003)
Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity.Molecular cell, 11 3
O. Porrua, D. Libri (2015)
Transcription termination and the control of the transcriptome: why, where and how to stopNature Reviews Molecular Cell Biology, 16
Radhakrishnan Kanagaraj, Daniela Huehn, April MacKellar, M. Menigatti, Lu Zheng, Václav Urban, I. Shevelev, A. Greenleaf, P. Janscak (2010)
RECQ5 helicase associates with the C-terminal repeat domain of RNA polymerase II during productive elongation phase of transcriptionNucleic Acids Research, 38
F. Chen, Ashley Woodfin, Alessandro Gardini, Ryan Rickels, Stacy Marshall, Edwin Smith, R. Shiekhattar, A. Shilatifard (2015)
PAF1, a Molecular Regulator of Promoter-Proximal Pausing by RNA Polymerase IICell, 162
A. Hyman, C. Weber, F. Jülicher (2014)
Liquid-liquid phase separation in biology.Annual review of cell and developmental biology, 30
John Arigo, D. Eyler, K. Carroll, J. Corden (2006)
Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3.Molecular cell, 23 6
Fernando Oesterreich, S. Preibisch, K. Neugebauer (2010)
Global analysis of nascent RNA reveals transcriptional pausing in terminal exons.Molecular cell, 40 4
B. Lunde, S. Reichow, Minkyu Kim, Hyunsuk Suh, T. Leeper, Fan Yang, H. Mutschler, S. Buratowski, A. Meinhart, G. Varani (2010)
Cooperative interaction of transcription termination factors with the RNA polymerase II C-terminal domainNature structural & molecular biology, 17
D. Eick, M. Geyer (2013)
The RNA polymerase II carboxy-terminal domain (CTD) code.Chemical reviews, 113 11
J. Warner (1999)
The economics of ribosome biosynthesis in yeast.Trends in biochemical sciences, 24 11
Bartlomiej Bartkowiak, Pengda Liu, H. Phatnani, N. Fuda, Jeffrey Cooper, D. Price, K. Adelman, J. Lis, A. Greenleaf (2010)
CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1.Genes & development, 24 20
Jie Yao, M. Ardehali, C. Fecko, W. Webb, J. Lis (2007)
Intranuclear distribution and local dynamics of RNA polymerase II during transcription activation.Molecular cell, 28 6
S. McCracken, N. Fong, K. Yankulov, S. Ballantyne, G. Pan, J. Greenblatt, S. Patterson, M. Wickens, D. Bentley (1997)
The C-terminal domain of RNA polymerase II couples mRNA processing to transcriptionNature, 385
S. Buratowski (2003)
The CTD codeNature Structural Biology, 10
L. Milligan, V. Huynh-Thu, Clémentine Delan-Forino, A. Tuck, E. Petfalski, Rodrigo Lombraña, G. Sanguinetti, Grzegorz Kudla, D. Tollervey (2016)
Strand-specific , high-resolution mapping of modified RNA polymerase II
Joel Berry, Stephanie Weber, Nilesh Vaidya, M. Haataja, C. Brangwynne (2015)
RNA transcription modulates phase transition-driven nuclear body assemblyProceedings of the National Academy of Sciences, 112
S. Yoh, Helen Cho, Loni Pickle, R. Evans, K. Jones (2007)
The Spt6 SH2 domain binds Ser2-P RNAPII to direct Iws1-dependent mRNA splicing and export.Genes & development, 21 2
Siheng Xiang, Masato Kato, Leeju Wu, Yi Lin, Ming Ding, Yajie Zhang, Yonghao Yu, S. McKnight (2015)
The LC Domain of hnRNPA2 Adopts Similar Conformations in Hydrogel Polymers, Liquid-like Droplets, and NucleiCell, 163
Charles David, A. Boyne, S. Millhouse, J. Manley (2011)
The RNA polymerase II C-terminal domain promotes splicing activation through recruitment of a U2AF65-Prp19 complex.Genes & development, 25 9
S. Alberti (2017)
Phase separation in biologyCurrent Biology, 27
K. Burke, Abigail Janke, Christy Rhine, N. Fawzi (2015)
Residue-by-Residue View of In Vitro FUS Granules that Bind the C-Terminal Domain of RNA Polymerase II.Molecular cell, 60 2
P. Robinson, D. Bushnell, Michael Trnka, A. Burlingame, R. Kornberg (2012)
Structure of the Mediator Head module bound to the carboxy-terminal domain of RNA polymerase IIProceedings of the National Academy of Sciences, 109
Rob Chapman, M. Heidemann, T. Albert, R. Mailhammer, A. Flatley, M. Meisterernst, E. Kremmer, D. Eick (2007)
Transcribing RNA Polymerase II Is Phosphorylated at CTD Residue Serine-7Science, 318
Juan Rodríguez-Molina, S. Tseng, Shane Simonett, J. Taunton, A. Ansari (2016)
Engineered Covalent Inactivation of TFIIH-Kinase Reveals an Elongation Checkpoint and Results in Widespread mRNA Stabilization.Molecular cell, 63 3
M. Altmeyer, K. Neelsen, Federico Teloni, I. Pozdnyakova, Stefania Pellegrino, Merete Grøfte, M. Rask, Werner Streicher, Stephanie Jungmichel, M. Nielsen, J. Lukas (2015)
Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose)Nature Communications, 6
Núria Radó-Trilla, M. Albà (2012)
Dissecting the role of low-complexity regions in the evolution of vertebrate proteinsBMC Evolutionary Biology, 12
B. Schwer, Stewart Shuman (1996)
Conditional inactivation of mRNA capping enzyme affects yeast pre-mRNA splicing in vivo.RNA, 2 6
Hua Lu, Osvaldo Flores, Roberto Weinmann, Danny Reinberg (1991)
The nonphosphorylated form of RNA polymerase II preferentially associates with the preinitiation complex.Proceedings of the National Academy of Sciences of the United States of America, 88 22
Erika Vojnic, B. Simon, B. Strahl, M. Sattler, P. Cramer (2006)
Structure and Carboxyl-terminal Domain (CTD) Binding of the Set2 SRI Domain That Couples Histone H3 Lys36 Methylation to Transcription*Journal of Biological Chemistry, 281
T-K Kim (2010)
Widespread transcription at neuronal activity-regulated enhancersNature, 465
Hui Li, Zhihong Zhang, B. Wang, Junmei Zhang, Yingming Zhao, Ying Jin (2007)
Wwp2-Mediated Ubiquitination of the RNA Polymerase II Large Subunit in Mouse Embryonic Pluripotent Stem CellsMolecular and Cellular Biology, 27
B. Schwer, Ana Sanchez, S. Shuman (2012)
Punctuation and syntax of the RNA polymerase II CTD code in fission yeastProceedings of the National Academy of Sciences, 109
Roland Schüller, D. Eick (2016)
Getting Access to Low-Complexity Domain Modifications.Trends in biochemical sciences, 41 11
Sylvain Egloff, Shona Murphy (2008)
Cracking the RNA polymerase II CTD code.Trends in genetics : TIG, 24 6
A. Chapman, N. Agabian (1994)
Trypanosoma brucei RNA polymerase II is phosphorylated in the absence of carboxyl-terminal domain heptapeptide repeats.The Journal of biological chemistry, 269 7
M. Heidemann, Corinna Hintermair, Kirsten Voss, D. Eick (2013)
Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription.Biochimica et biophysica acta, 1829 1
H. Qiu, Cuihua Hu, N. Gaur, A. Hinnebusch (2012)
Pol II CTD kinases Bur1 and Kin28 promote Spt5 CTR‐independent recruitment of Paf1 complexThe EMBO Journal, 31
S. Ranuncolo, Salil Ghosh, J. Hanover, G. Hart, B. Lewis (2012)
Evidence of the Involvement of O-GlcNAc-modified Human RNA Polymerase II CTD in Transcription in Vitro and in Vivo*The Journal of Biological Chemistry, 287
Laura Milligan, V. Huynh-Thu, Clémentine Delan-Forino, A. Tuck, E. Petfalski, Rodrigo Lombraña, Guido Sanguinetti, Grzegorz Kudla, D. Tollervey (2016)
Strand‐specific, high‐resolution mapping of modified RNA polymerase IIMolecular Systems Biology, 12
A. Meinhart, P. Cramer (2004)
Recognition of RNA polymerase II carboxy-terminal domain by 3′-RNA-processing factorsNature, 430
Ilmin Kwon, Masato Kato, Siheng Xiang, Leeju Wu, Pano Theodoropoulos, Hamid Mirzaei, T. Han, S. Xie, J. Corden, S. McKnight (2013)
Phosphorylation-Regulated Binding of RNA Polymerase II to Fibrous Polymers of Low-Complexity DomainsCell, 155
Katie Zobeck, Martin Buckley, W. Zipfel, J. Lis (2010)
Recruitment timing and dynamics of transcription factors at the Hsp70 loci in living cells.Molecular cell, 40 6
Daniel Ginsburg, C. Govind, A. Hinnebusch (2009)
NuA4 Lysine Acetyltransferase Esa1 Is Targeted to Coding Regions and Stimulates Transcription Elongation with Gcn5Molecular and Cellular Biology, 29
Edward Courchaine, Alice Lu, Karla Neugebauer (2016)
Droplet organelles?The EMBO Journal, 35
Laura Baranello, D. Wójtowicz, Kairong Cui, B. Devaiah, Hye‐Jung Chung, Ka Chan-Salis, R. Guha, Kelli Wilson, Xiaohu Zhang, Hongliang Zhang, J. Piotrowski, Craig Thomas, D. Singer, B. Pugh, Y. Pommier, T. Przytycka, Fedor Kouzine, B. Lewis, K. Zhao, David Levens (2016)
RNA Polymerase II Regulates Topoisomerase 1 Activity to Favor Efficient TranscriptionCell, 165
(2014)
References 45 and 46 reveal that phosphorylation of the CTD by TFIIH dissociates the Mediator complex and induces promoter escape by Pol II
Lei Lu, Dacheng Fan, Chia-Wei Hu, Matthew Worth, Zhi-Xiong Ma, Jiaoyang Jiang (2016)
Distributive O-GlcNAcylation on the Highly Repetitive C-Terminal Domain of RNA Polymerase II.Biochemistry, 55 7
C. Bösken, L. Farnung, Corinna Hintermair, Miriam Schachter, Karin Vogel-Bachmayr, D. Blazek, K. Anand, R. Fisher, D. Eick, M. Geyer (2014)
The structure and substrate specificity of human Cdk12/Cyclin KNature Communications, 5
Nicolas Descostes, M. Heidemann, Lionel Spinelli, Roland Schüller, M. Maqbool, Romain Fenouil, Frederic Koch, C. Innocenti, M. Gut, I. Gut, D. Eick, J. Andrau (2014)
Tyrosine phosphorylation of RNA polymerase II CTD is associated with antisense promoter transcription and active enhancers in mammalian cellseLife, 3
J. Hsin, Amit Sheth, J. Manley (2011)
RNAP II CTD Phosphorylated on Threonine-4 Is Required for Histone mRNA 3′ End ProcessingScience, 334
(2016)
This work determines the abundance and composition of CTD phosphorylation states in vivo in S
(2004)
This publication describes how the specific phosphorylation of CTD Ser2 couples transcription to mRNA cleavage and polyadenylation
C. Cooke, J. Alwine (1996)
The cap and the 3' splice site similarly affect polyadenylation efficiencyMolecular and Cellular Biology, 16
D. Bentley (2014)
Coupling mRNA processing with transcription in time and spaceNature Reviews Genetics, 15
K. Carroll, R. Ghirlando, Jessica Ames, J. Corden (2007)
Interaction of yeast RNA-binding proteins Nrd1 and Nab3 with RNA polymerase II terminator elements.RNA, 13 3
Swaminathan Venkatesh, J. Workman (2015)
Histone exchange, chromatin structure and the regulation of transcriptionNature Reviews Molecular Cell Biology, 16
J. Hsin, Wencheng Li, M. Hoque, B. Tian, J. Manley (2014)
RNAP II CTD tyrosine 1 performs diverse functions in vertebrate cellseLife, 3
Chin-Yu Chen, Chia-Chi Chang, Chi-Fu Yen, M. Chiu, Wei-Hau Chang (2009)
Mapping RNA exit channel on transcribing RNA polymerase II by FRET analysisProceedings of the National Academy of Sciences, 106
P. Robinson, Michael Trnka, D. Bushnell, Ralph Davis, Pierre-Jean Mattei, A. Burlingame, R. Kornberg (2016)
Structure of a Complete Mediator-RNA Polymerase II Pre-Initiation ComplexCell, 166
E. Rosonina, N. Yurko, Wencheng Li, M. Hoque, B. Tian, J. Manley (2014)
Threonine-4 of the budding yeast RNAP II CTD couples transcription with Htz1-mediated chromatin remodelingProceedings of the National Academy of Sciences, 111
Joshua Tietjen, David Zhang, Juan Rodríguez-Molina, Brent White, Md. Akhtar, M. Heidemann, X. Li, Rob Chapman, K. Shokat, S. Keleş, D. Eick, A. Ansari (2010)
Chemical-genomic dissection of the CTD codeNature structural & molecular biology, 17
Nihal Terzi, L. Churchman, L. Vasiljeva, J. Weissman, S. Buratowski (2011)
H3K4 Trimethylation by Set1 Promotes Efficient Termination by the Nrd1-Nab3-Sen1 PathwayMolecular and Cellular Biology, 31
Sylvain Egloff, Dawn O’Reilly, Rob Chapman, Alice Taylor, K. Tanzhaus, Laura Pitts, D. Eick, Shona Murphy (2007)
Serine-7 of the RNA Polymerase II CTD Is Specifically Required for snRNA Gene ExpressionScience, 318
Hyunsuk Suh, D. Hazelbaker, L. Soares, S. Buratowski (2013)
The C-terminal domain of Rpb1 functions on other RNA polymerase II subunits.Molecular cell, 51 6
Ian King, C. Yandava, A. Mabb, Jack Hsiao, Hsien-Sung Huang, Hsien-Sung Huang, Brandon Pearson, J. Calabrese, J. Starmer, J. Parker, T. Magnuson, S. Chamberlain, B. Philpot, M. Zylka (2013)
Topoisomerases facilitate transcription of long genes linked to autismNature, 501
S. Hahn, E. Young (2011)
Transcriptional Regulation in Saccharomyces cerevisiae: Transcription Factor Regulation and Function, Mechanisms of Initiation, and Roles of Activators and CoactivatorsGenetics, 189
C. Jeronimo, Alain Bataille, F. Robert (2013)
The writers, readers, and functions of the RNA polymerase II C-terminal domain code.Chemical reviews, 113 11
I. Jonkers, J. Lis (2015)
Getting up to speed with transcription elongation by RNA polymerase IINature Reviews Molecular Cell Biology, 16
I. Cissé, I. Izeddin, S. Causse, L. Boudarène, A. Senecal, L. Mureşan, C. Dugast-Darzacq, B. Hajj, M. Dahan, X. Darzacq (2013)
Real-Time Dynamics of RNA Polymerase II Clustering in Live Human CellsScience, 341
M. West, J. Corden (1995)
Construction and analysis of yeast RNA polymerase II CTD deletion and substitution mutations.Genetics, 140 4
J. Schwartz, Christopher Ebmeier, E. Podell, Joseph Heimiller, D. Taatjes, T. Cech (2012)
FUS binds the CTD of RNA polymerase II and regulates its phosphorylation at Ser2.Genes & development, 26 24
Sebastian Schröder, E. Herker, Friederike Itzen, Daniel He, Sean Thomas, Daniel Gilchrist, K. Kaehlcke, Sungyoo Cho, K. Pollard, J. Capra, M. Schnölzer, P. Cole, M. Geyer, B. Bruneau, K. Adelman, M. Ott (2013)
Acetylation of RNA polymerase II regulates growth-factor-induced gene transcription in mammalian cells.Molecular cell, 52 3
D. Cadena, M. Dahmus (1987)
Messenger RNA synthesis in mammalian cells is catalyzed by the phosphorylated form of RNA polymerase II.The Journal of biological chemistry, 262 26
S. Ahn, Minkyu Kim, S. Buratowski (2004)
Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3' end processing.Molecular cell, 13 1
N. Krogan, Minkyu Kim, A. Tong, A. Golshani, G. Cagney, Veronica Canadien, D. Richards, B. Beattie, A. Emili, Charles Boone, A. Shilatifard, S. Buratowski, J. Greenblatt (2003)
Methylation of Histone H3 by Set2 in Saccharomyces cerevisiae Is Linked to Transcriptional Elongation by RNA Polymerase IIMolecular and Cellular Biology, 23
Corinna Hintermair, M. Heidemann, Frederic Koch, Nicolas Descostes, M. Gut, I. Gut, Romain Fenouil, P. Ferrier, A. Flatley, E. Kremmer, Rob Chapman, J. Andrau, D. Eick (2012)
Threonine‐4 of mammalian RNA polymerase II CTD is targeted by Polo‐like kinase 3 and required for transcriptional elongationThe EMBO Journal, 31
D. Tardiff, S. Lacadie, M. Rosbash (2006)
A genome-wide analysis indicates that yeast pre-mRNA splicing is predominantly posttranscriptional.Molecular cell, 24 6
S. Buratowski (2009)
Progression through the RNA polymerase II CTD cycle.Molecular cell, 36 4
C. Jeronimo, F. Robert (2014)
Kin28 regulates the transient association of Mediator with core promotersNature structural & molecular biology, 21
Minkyu Kim, Hyunsuk Suh, E. Cho, S. Buratowski (2009)
Phosphorylation of the Yeast Rpb1 C-terminal Domain at Serines 2, 5, and 7*The Journal of Biological Chemistry, 284
Dorothy Zhao, G. Gish, Ulrich Braunschweig, Yue Li, Z. Ni, F. Schmitges, Guoqing Zhong, Ke Liu, Weiguo Li, J. Moffat, M. Vedadi, J. Min, T. Pawson, B. Blencowe, J. Greenblatt (2015)
SMN and symmetric arginine dimethylation of RNA polymerase II C-terminal domain control terminationNature, 529
D. Morris, A. Greenleaf (2000)
The Splicing Factor, Prp40, Binds the Phosphorylated Carboxyl-terminal Domain of RNA Polymerase II*The Journal of Biological Chemistry, 275
(1997)
This work demonstrates that the CTD is important for coupling transcription to co-transcriptional RNA processing
A. Mayer, Julia di Iulio, Seth Maleri, Umut Eser, J. Vierstra, Alex Reynolds, R. Sandstrom, J. Stamatoyannopoulos, L. Churchman (2015)
Native Elongating Transcript Sequencing Reveals Human Transcriptional Activity at Nucleotide ResolutionCell, 161
P. Komarnitsky, E. Cho, S. Buratowski (2000)
Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription.Genes & development, 14 19
Minkyu Kim, N. Krogan, L. Vasiljeva, O. Rando, Eduard Nedea, J. Greenblatt, S. Buratowski (2004)
The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase IINature, 432
Zhe Liu, W. Legant, Bi-Chang Chen, Li Li, J. Grimm, L. Lavis, E. Betzig, R. Tjian (2014)
3D imaging of Sox2 enhancer clusters in embryonic stem cellseLife, 3
N. Czudnochowski, C. Bösken, M. Geyer (2012)
Serine-7 but not serine-5 phosphorylation primes RNA polymerase II CTD for P-TEFb recognitionNature Communications, 3
I. Topisirovic, Y. Svitkin, N. Sonenberg, A. Shatkin (2011)
Cap and cap‐binding proteins in the control of gene expressionWiley Interdisciplinary Reviews: RNA, 2
Kristian Jeppsson, Takaharu Kanno, K. Shirahige, Camilla Sjögren (2014)
The maintenance of chromosome structure: positioning and functioning of SMC complexesNature Reviews Molecular Cell Biology, 15
This study defines a direct role for Arg methylation at the CTD in transcription termination
J. Dias, T. Rito, Elena Triglia, A. Kukalev, Carmelo Ferrai, Mita Chotalia, Emily Brookes, H. Kimura, A. Pombo (2015)
Methylation of RNA polymerase II non-consensus Lysine residues marks early transcription in mammalian cellseLife, 4
K. Wong, Yi Jin, K. Struhl (2014)
TFIIH phosphorylation of the Pol II CTD stimulates mediator dissociation from the preinitiation complex and promoter escape.Molecular cell, 54 4
J. Payne, P. Laybourn, M. Dahmus (1989)
The transition of RNA polymerase II from initiation to elongation is associated with phosphorylation of the carboxyl-terminal domain of subunit IIa.The Journal of biological chemistry, 264 33
Bo Gu, D. Eick, O. Bensaude (2012)
CTD serine-2 plays a critical role in splicing and termination factor recruitment to RNA polymerase II in vivoNucleic Acids Research, 41
T. Stasevich, Yoko Hayashi-Takanaka, Y. Sato, Kazumitsu Maehara, Y. Ohkawa, K. Sakata-Sogawa, M. Tokunaga, T. Nagase, N. Nozaki, J. McNally, H. Kimura (2014)
Regulation of RNA polymerase II activation by histone acetylation in single living cellsNature, 516
Alain Bataille, C. Jeronimo, P. Jacques, L. Laramée, Marie-Ève Fortin, A. Forest, Maxime Bergeron, S. Hanes, F. Robert (2012)
A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes.Molecular cell, 45 2
Bing Li, L. Howe, Scott Anderson, J. Yates, J. Workman (2003)
The Set2 Histone Methyltransferase Functions through the Phosphorylated Carboxyl-terminal Domain of RNA Polymerase II*The Journal of Biological Chemistry, 278
Kaiwei Liang, Xin Gao, J. Gilmore, L. Florens, M. Washburn, Edwin Smith, A. Shilatifard (2015)
Characterization of Human Cyclin-Dependent Kinase 12 (CDK12) and CDK13 Complexes in C-Terminal Domain Phosphorylation, Gene Transcription, and RNA ProcessingMolecular and Cellular Biology, 35
O. Jasnovidova, R. Stefl (2013)
The CTD code of RNA polymerase II: a structural viewWiley Interdisciplinary Reviews: RNA, 4
C. Cassart, Julie Drogat, Valérie Migeot, D. Hermand (2012)
Distinct requirement of RNA polymerase II CTD phosphorylations in budding and fission yeastTranscription, 3
Daniel Schaft, Assen Roguev, K. Kotovic, A. Shevchenko, M. Sarov, A. Shevchenko, K. Neugebauer, A. Stewart (2003)
The histone 3 lysine 36 methyltransferase, SET2, is involved in transcriptional elongation.Nucleic acids research, 31 10
C. Govind, Fan Zhang, H. Qiu, Kimberly Hofmeyer, A. Hinnebusch (2007)
Gcn5 promotes acetylation, eviction, and methylation of nucleosomes in transcribed coding regions.Molecular cell, 25 1
Tae-Kyung Kim, M. Hemberg, Jesse Gray, Allen Costa, Daniel Bear, Jing Wu, D. Harmin, Mike Laptewicz, K. Barbara-Haley, S. Kuersten, Eirene Markenscoff-Papadimitriou, Dietmar Kuhl, H. Bito, P. Worley, Gabriel Kreiman, M. Greenberg (2018)
supplementary figures
Mickaël Durand-Dubief, J. Svensson, Jenna Persson, K. Ekwall (2011)
Topoisomerases, chromatin and transcription terminationTranscription, 2
Nurul Islam, David Fox, R. Guo, T. Enomoto, Weidong Wang (2010)
RecQL5 Promotes Genome Stabilization through Two Parallel Mechanisms—Interacting with RNA Polymerase II and Acting as a HelicaseMolecular and Cellular Biology, 30
B. Peterlin, D. Price (2006)
Controlling the elongation phase of transcription with P-TEFb.Molecular cell, 23 3
Kevin Harlen, Kristine Trotta, Erin Smith, Mohammad Mosaheb, S. Fuchs, L. Churchman (2016)
Comprehensive RNA Polymerase II Interactomes Reveal Distinct and Varied Roles for Each Phospho-CTD Residue.Cell reports, 15 10
Simon Drouin, L. Laramée, P. Jacques, A. Forest, Maxime Bergeron, F. Robert (2010)
DSIF and RNA Polymerase II CTD Phosphorylation Coordinate the Recruitment of Rpd3S to Actively Transcribed GenesPLoS Genetics, 6
B. Schwer, Danny Bitton, Ana Sanchez, J. Bähler, S. Shuman (2014)
Individual letters of the RNA polymerase II CTD code govern distinct gene expression programs in fission yeastProceedings of the National Academy of Sciences, 111
Kelby Kizer, H. Phatnani, Yoichiro Shibata, Hana Hall, A. Greenleaf, B. Strahl (2005)
A Novel Domain in Set2 Mediates RNA Polymerase II Interaction and Couples Histone H3 K36 Methylation with Transcript ElongationMolecular and Cellular Biology, 25
Bartlomiej Bartkowiak, Christopher Yan, A. Greenleaf (2015)
Engineering an analog-sensitive CDK12 cell line using CRISPR/Cas.Biochimica et biophysica acta, 1849 9
H Kim (2010)
Gene-specific RNA polymerase II phosphorylation and the CTD codeNat. Struct. Mol. Biol., 17
A. Mayer, Michael Lidschreiber, M. Siebert, K. Leike, J. Söding, P. Cramer (2010)
Uniform transitions of the general RNA polymerase II transcription complexNature Structural &Molecular Biology, 17
Jiangxin Liu, S. Fan, Chul-Jin Lee, A. Greenleaf, Pei Zhou (2013)
Specific Interaction of the Transcription Elongation Regulator TCERG1 with RNA Polymerase II Requires Simultaneous Phosphorylation at Ser2, Ser5, and Ser7 within the Carboxyl-terminal Domain Repeat*The Journal of Biological Chemistry, 288
Sean Flaherty, P. Fortes, E. Izaurralde, I. Mattaj, G. Gilmartin (1997)
Participation of the nuclear cap binding complex in pre-mRNA 3' processing.Proceedings of the National Academy of Sciences of the United States of America, 94 22
R. Sims, Luis Rojas, D. Beck, R. Bonasio, Roland Schüller, W. Drury, D. Eick, D. Reinberg (2011)
The C-Terminal Domain of RNA Polymerase II Is Modified by Site-Specific MethylationScience, 332
K. Adelman, J. Lis (2012)
Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoansNature Reviews Genetics, 13
J. Stiller, Matthew Cook (2004)
Functional Unit of the RNA Polymerase II C-Terminal Domain Lies within Heptapeptide PairsEukaryotic Cell, 3
L. Myers, C. Gustafsson, D. Bushnell, M. Lui, H. Erdjument-Bromage, P. Tempst, R. Kornberg (1998)
The Med proteins of yeast and their function through the RNA polymerase II carboxy-terminal domain.Genes & development, 12 1
C. Ho, S. Shuman (1999)
Distinct roles for CTD Ser-2 and Ser-5 phosphorylation in the recruitment and allosteric activation of mammalian mRNA capping enzyme.Molecular cell, 3 3
Roland Schüller, I. Forné, T. Straub, A. Schreieck, Y. Texier, Nilay Shah, T. Decker, P. Cramer, A. Imhof, D. Eick (2016)
Heptad-Specific Phosphorylation of RNA Polymerase II CTD.Molecular cell, 61 2
A. Mayer, M. Heidemann, Michael Lidschreiber, A. Schreieck, Mai Sun, Corinna Hintermair, E. Kremmer, D. Eick, P. Cramer (2012)
CTD Tyrosine Phosphorylation Impairs Termination Factor Recruitment to RNA Polymerase IIScience, 336
Summer Morrill, Alexandra Exner, Michael Babokhov, Bradley Reinfeld, S. Fuchs (2016)
DNA Instability Maintains the Repeat Length of the Yeast RNA Polymerase II C-terminal Domain*The Journal of Biological Chemistry, 291
Corinna Hintermair, Kirsten Voss, I. Forné, M. Heidemann, A. Flatley, E. Kremmer, A. Imhof, D. Eick (2016)
Specific threonine-4 phosphorylation and function of RNA polymerase II CTD during M phase progressionScientific Reports, 6
M. Moore, Elissa Schwartzfarb, P. Silver, Michael Yu (2006)
Differential recruitment of the splicing machinery during transcription predicts genome-wide patterns of mRNA splicing.Molecular cell, 24 6
Fernando Oesterreich, Lydia Herzel, K. Straube, K. Hujer, J. Howard, K. Neugebauer (2016)
Splicing of Nascent RNA Coincides with Intron Exit from RNA Polymerase IICell, 165
D. Licatalosi, G. Geiger, M. Minet, S. Schroeder, K. Cilli, J.Bryan McNeil, D. Bentley (2002)
Functional interaction of yeast pre-mRNA 3' end processing factors with RNA polymerase II.Molecular cell, 9 5
M. Smolle, J. Workman (2013)
Transcription-associated histone modifications and cryptic transcription.Biochimica et biophysica acta, 1829 1
The carboxy-terminal domain (CTD) of RNA polymerase II (Pol II) is composed of repeats of the heptapeptide Tyr-Ser-Pro-Thr-Ser-Pro-Ser and is dynamically post-translationally modified to regulate transcription. CTD phosphorylation states are associated with and regulate distinct stages of the transcription process. The CTD and its phosphorylation couple transcription to co-transcriptional processes such as RNA processing and chromatin modification. Multiple CTD modifications coalesce to regulate transcriptional processes such as transcription termination through the regulated recruitment of transcription factors. The low complexity of the CTD can enable its interactions with other low-complexity protein domains and undergo liquid–liquid phase separation to form liquid-like droplets that could serve as transient membraneless compartments. The high local concentration at promoters of Pol II CTDs, transcription factors and RNA from sense, divergent antisense and enhancer transcription may facilitate the formation of liquid-like droplets at promoters to regulate transcription.
Nature Reviews Molecular Cell Biology – Springer Journals
Published: Mar 1, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.