Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Thellungiella halophila , a salt‐tolerant relative of Arabidopsis thaliana , possesses effective mechanisms to discriminate between potassium and sodium

Thellungiella halophila , a salt‐tolerant relative of Arabidopsis thaliana , possesses effective... ABSTRACT Thellungiella halophila is a salt‐tolerant close relative of Arabidopsis thaliana. Significant mRNA similarity was confirmed by hybridization of T. halophila mRNA with the A. thaliana GeneChip ATH1. To establish a platform for future molecular comparison of the two species several physiological mechanisms, which may confer high salt tolerance to T. halophila, were investigated. Determination of ion content in shoots and roots of A. thaliana and T. halophila indicated different strategies of ion uptake and translocation from root to shoot in the two species. During salt stress T. halophila accumulated less sodium than A. thaliana. Tissue concentrations of sodium and potassium showed negative correlation in A. thaliana but not in T. halophila. Electrophysiological experiments proved high potassium/sodium selectivity of root plasma membrane channels in T. halophila. In particular, voltage‐independent currents were more selective for potassium in T. halophila than in A. thaliana. Single cell sampling of T. halophila leaves during salt exposure revealed increased concentrations of sodium and decreased concentrations of potassium in epidermal cells suggesting that this cell type could function to ensure storage of sodium and exchange of potassium with the rest of leaf. Application of salt resulted in a sharp drop of transpiration in A. thaliana. By contrast, transpiration in T. halophila responded more slowly and was only slightly inhibited by salt treatment, thus maintaining high water uptake and ion transport. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Cell & Environment Wiley

Thellungiella halophila , a salt‐tolerant relative of Arabidopsis thaliana , possesses effective mechanisms to discriminate between potassium and sodium

Loading next page...
 
/lp/wiley/thellungiella-halophila-a-salt-tolerant-relative-of-arabidopsis-AVCbIDauf4

References (56)

Publisher
Wiley
Copyright
Copyright © 2004 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0140-7791
eISSN
1365-3040
DOI
10.1046/j.0016-8025.2003.01116.x
Publisher site
See Article on Publisher Site

Abstract

ABSTRACT Thellungiella halophila is a salt‐tolerant close relative of Arabidopsis thaliana. Significant mRNA similarity was confirmed by hybridization of T. halophila mRNA with the A. thaliana GeneChip ATH1. To establish a platform for future molecular comparison of the two species several physiological mechanisms, which may confer high salt tolerance to T. halophila, were investigated. Determination of ion content in shoots and roots of A. thaliana and T. halophila indicated different strategies of ion uptake and translocation from root to shoot in the two species. During salt stress T. halophila accumulated less sodium than A. thaliana. Tissue concentrations of sodium and potassium showed negative correlation in A. thaliana but not in T. halophila. Electrophysiological experiments proved high potassium/sodium selectivity of root plasma membrane channels in T. halophila. In particular, voltage‐independent currents were more selective for potassium in T. halophila than in A. thaliana. Single cell sampling of T. halophila leaves during salt exposure revealed increased concentrations of sodium and decreased concentrations of potassium in epidermal cells suggesting that this cell type could function to ensure storage of sodium and exchange of potassium with the rest of leaf. Application of salt resulted in a sharp drop of transpiration in A. thaliana. By contrast, transpiration in T. halophila responded more slowly and was only slightly inhibited by salt treatment, thus maintaining high water uptake and ion transport.

Journal

Plant Cell & EnvironmentWiley

Published: Jan 1, 2004

There are no references for this article.