Access the full text.
Sign up today, get DeepDyve free for 14 days.
D. Su, Chengyin Wang, H. Ahn, Guoxiu Wang (2013)
Single crystalline Na(0.7)MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance.Chemistry, 19 33
L. Seguin, G. Amatucci, M. Anne, Y. Chabre, P. Strobel, J. Tarascon, G. Vaughan (1999)
Structural study of NiO2 and CoO2 as end members of the lithiated compounds by in situ high resolution X-ray powder diffractionJournal of Power Sources, 81
Shunyi Yang, Xian-you Wang, Ying Wang, Quanqi Chen, Jiaojiao Li, Xiukang Yang (2010)
Effects of Na content on structure and electrochemical performances of NaxMnO2+δ cathode materialTransactions of Nonferrous Metals Society of China, 20
H. Wang, Bingjian Yang, Xiaozhen Liao, Jing Xu, Dezhi Yang, Yu-shi He, Zifeng Ma (2013)
Electrochemical properties of P2-Na2/3[Ni1/3Mn2/3]O2 cathode material for sodium ion batteries when cycled in different voltage rangesElectrochimica Acta, 113
Takayuki Kodera, T. Ogihara (2014)
Synthesis and electrochemical properties of Na2/3Fe1/3Mn2/3O2 cathode materials for sodium ion battery by spray pyrolysisJournal of the Ceramic Society of Japan, 122
Jean-Jacques Braconnier, C. Delmas, P. Hagenmuller (1982)
Etude par desintercalation electrochimique des systemes NaxCrO2 et NaxNiO2Materials Research Bulletin, 17
(1994)
Mater
G. Prado, L. Fournès, C. Delmas (2001)
On the LixNi0.70Fe0.15Co0.15O2 system : An X-ray diffraction and Mössbauer studyIEEE Journal of Solid-state Circuits, 159
Ying Zhang, K. Ye, Kui Cheng, Guiling Wang, D. Cao (2014)
Three-dimensional lamination-like P2-Na2/3Ni1/3Mn2/3O2 assembled with two-dimensional ultrathin nanosheets as the cathode material of an aqueous capacitor batteryElectrochimica Acta, 148
V. Petříček, M. Dušek, L. Palatinus (2014)
Crystallographic Computing System JANA2006: General featuresZeitschrift für Kristallographie - Crystalline Materials, 229
N. Yabuuchi, Masataka Kajiyama, J. Iwatate, Heisuke Nishikawa, Shuji Hitomi, R. Okuyama, Ryo Usui, Y. Yamada, S. Komaba (2012)
P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries.Nature materials, 11 6
P. Stephens (1999)
Phenomenological model of anisotropic peak broadening in powder diffractionJournal of Applied Crystallography, 32
X. Xia, J. Dahn (2012)
A Study of the Reactivity of De-Intercalated NaNi0.5Mn0.5O2 with Non-Aqueous Solvent and Electrolyte by Accelerating Rate CalorimetryJournal of The Electrochemical Society, 159
S. Komaba, T. Ishikawa, N. Yabuuchi, W. Murata, Atsushi Ito, Y. Ohsawa (2011)
Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries.ACS applied materials & interfaces, 3 11
R. Berthelot, D. Carlier, D. Carlier, C. Delmas, C. Delmas (2011)
Electrochemical investigation of the P2–NaxCoO2 phase diagram.Nature materials, 10 1
D. Carlier, D. Carlier, J. Cheng, J. Cheng, R. Berthelot, M. Guignard, M. Guignard, M. Yoncheva, M. Yoncheva, R. Stoyanova, R. Stoyanova, B. Hwang, C. Delmas, C. Delmas (2011)
The P2-Na(2/3)Co(2/3)Mn(1/3)O2 phase: structure, physical properties and electrochemical behavior as positive electrode in sodium battery.Dalton transactions, 40 36
J. Pérès, C. Delmas, A. Rougier, M. Broussely, F. Perton, P. Biensan, P. Willmann (1996)
The relationship between the composition of lithium nickel oxide and the loss of reversibility during the first cycleJournal of Physics and Chemistry of Solids, 57
(1852)
del Amo, B
Donghan Kim, Eungje Lee, Michael Slater, Wenquan Lu, Shawn Rood, Christopher Johnson (2012)
Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery applicationElectrochemistry Communications, 18
(2012)
Inorg
L. Guerlou-Demourgues, L. Fournès, C. Delmas (1996)
In Situ 57Fe Mössbauer Spectroscopy Study of the Electrochemical Behavior of an Iron‐Substituted Nickel Hydroxide ElectrodeJournal of The Electrochemical Society, 143
D. Buchholz, A. Moretti, Richard Kloepsch, S. Nowak, V. Siozios, M. Winter, S. Passerini (2013)
Toward Na-ion Batteries—Synthesis and Characterization of a Novel High Capacity Na Ion Intercalation MaterialChemistry of Materials, 25
R. Stoyanova, D. Carlier, M. Sendova-Vassileva, M. Yoncheva, E. Zhecheva, D. Nihtianova, C. Delmas (2010)
Stabilization of over-stoichiometric Mn4+ in layered Na2/3MnO2Journal of Solid State Chemistry, 183
C. Delmas, J. Braconnier, C. Fouassier, P. Hagenmuller (1981)
Electrochemical intercalation of sodium in NaxCoO2 bronzesSolid State Ionics
J. Yoshida, Élodie Guérin, M. Arnault, C. Constantin, B. Boisse, D. Carlier, M. Guignard, C. Delmas (2014)
New P2 - Na0.70Mn0.60Ni0.30Co0.10O2 Layered Oxide as Electrode Material for Na-Ion BatteriesJournal of The Electrochemical Society, 161
J. Parant, R. Olazcuaga, M. Devalette, C. Fouassier, P. Hagenmuller (1971)
Sur quelques nouvelles phases de formule NaxMnO2 (x ⩽ 1)Journal of Solid State Chemistry, 3
S. Doubaji, M. Valvo, I. Saadoune, M. Dahbi, K. Edström (2014)
Synthesis and characterization of a new layered cathode material for sodium ion batteriesJournal of Power Sources, 266
S. Komaba, N. Yabuuchi, T. Nakayama, A. Ogata, T. Ishikawa, I. Nakai (2012)
Study on the reversible electrode reaction of Na(1-x)Ni(0.5)Mn(0.5)O2 for a rechargeable sodium-ion battery.Inorganic chemistry, 51 11
Jie Zhao, Liwei Zhao, N. Dimov, S. Okada, T. Nishida (2013)
Electrochemical and Thermal Properties of α-NaFeO2 Cathode for Na-Ion BatteriesJournal of The Electrochemical Society, 160
C. Didier, M. Guignard, C. Denage, Olivier Szajwaj, S. Ito, I. Saadoune, J. Darriet, C. Delmas (2011)
Electrochemical Na-Deintercalation from NaVO2Electrochemical and Solid State Letters, 14
Plousia Vassilaras, Xiaohua Ma, X. Li, G. Ceder (2011)
Electrochemical Properties of Monoclinic NaNiO2Journal of The Electrochemical Society, 160
B. Boisse, D. Carlier, M. Guignard, C. Delmas (2013)
Structural and Electrochemical Characterizations of P2 and New O3-NaxMn1-yFeyO2 Phases Prepared by Auto-Combustion Synthesis for Na-Ion BatteriesJournal of The Electrochemical Society, 160
Wenwen Zhao, Hideyuki Kirie, A. Tanaka, M. Unno, Shinji Yamamoto, H. Noguchi (2014)
Synthesis of metal ion substituted P2-Na2/3Ni1/3Mn2/3O2 cathode material with enhanced performance for Na ion batteriesMaterials Letters, 135
C. Delmas, C. Tessier (1997)
Stacking faults in the structure of nickel hydroxide: a rationale of its high electrochemical activityJournal of Materials Chemistry, 7
M. Sathiya, K. Hemalatha, K. Ramesha, J. Tarascon, A. Prakash (2012)
Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi1/3Mn1/3Co1/3O2Chemistry of Materials, 24
(2013)
de Boisse, D
L. Croguennec, C. Pouillerie, C. Delmas (2000)
NiO2 Obtained by Electrochemical Lithium Deintercalation from Lithium Nickelate: Structural ModificationsJournal of The Electrochemical Society, 147
Iroon Polytechniou (2006)
Influence of cultivation temperature on the ligninolytic activity of selected fungal strains
N. Yabuuchi, Masaya Yano, H. Yoshida, Satoru Kuze, S. Komaba (2013)
Synthesis and Electrode Performance of O3-Type NaFeO2-NaNi1/2Mn1/2O2 Solid Solution for Rechargeable Sodium BatteriesJournal of The Electrochemical Society, 160
M. Guignard, C. Didier, J. Darriet, P. Bordet, E. Elkaïm, C. Delmas (2013)
P2-Na(x)VO2 system as electrodes for batteries and electron-correlated materials.Nature materials, 12 1
(2014)
Electrochim
Guoqiang Liu, L. Wen, Yue Li, Y. Kou (2015)
Synthesis and electrochemical properties of P2-Na2/3Ni1/3Mn2/3O2Ionics, 21
Kwangjin Park, Dongwook Han, Hyunjin Kim, Wonseok Chang, Byungjin Choi, Benayad Anass, Seok-Soo Lee (2014)
Characterization of a P2-type chelating-agent-assisted Na2/3Fe1/2Mn1/2O2 cathode material for sodium-ion batteriesRSC Advances, 4
Gurpreet Singh, B. Acebedo, M. Cabanas, D. Shanmukaraj, M. Armand, T. Rojo (2013)
An approach to overcome first cycle irreversible capacity in P2-Na2/3[Fe1/2Mn1/2]O2Electrochemistry Communications, 37
Jie Zhao, Jing Xu, D. Lee, N. Dimov, Y. Meng, S. Okada (2014)
Electrochemical and thermal properties of P2-type Na2/3Fe1/3Mn2/3O2 for Na-ion batteriesJournal of Power Sources, 264
Zhonghua and, J. Dahn (2001)
Intercalation of Water in P2, T2 and O2 Structure Az[CoxNi1/3-xMn2/3]O2Chemistry of Materials, 13
E. Gonzalo, M. Han, J. Amo, B. Acebedo, M. Casas‐Cabanas, T. Rojo (2014)
Synthesis and characterization of pure P2- and O3-Na2/3Fe2/3Mn1/3O2 as cathode materials for Na ion batteriesJournal of Materials Chemistry, 2
Luciana Chagas, D. Buchholz, Liming Wu, B. Vortmann, S. Passerini (2014)
Unexpected performance of layered sodium-ion cathode material in ionic liquid-based electrolyteJournal of Power Sources, 247
C. Pouillerie, L. Croguennec, C. Delmas (2000)
The LixNi1−yMgyO2 (y=0.05, 0.10) system: structural modifications observed upon cyclingSolid State Ionics, 132
Y. Takeda, K. Nakahara, M. Nishijima, N. Imanishi, O. Yamamoto, M. Takano, R. Kanno (1994)
Sodium deintercalation from sodium iron oxideMaterials Research Bulletin, 29
Jing Xu, D. Lee, Xiqian Yu, M. Leskes, A. Pell, G. Pintacuda, Xiao‐Qing Yang, C. Grey, Y. Meng (2014)
Identifying the Critical Role of Li Substitution in P2− Na x (Li y Ni z Mn 1−y−z )O 2 (0 < x, y, z < 1) Intercalation Cathode Materials for High-Energy Na-Ion Batteries
L. Dyer, B. Borie, G. Smith (1954)
Alkali Metal-Nickel Oxides of the Type MNiO2Journal of the American Chemical Society, 76
Benoit Boisse, D. Carlier, M. Guignard, L. Bourgeois, C. Delmas (2014)
P2-Na(x)Mn(1/2)Fe(1/2)O2 phase used as positive electrode in Na batteries: structural changes induced by the electrochemical (de)intercalation process.Inorganic chemistry, 53 20
L. Demourgues-Guerlou, L. Fournès, C. Delmas (1995)
On the Iron Oxidation State in the Iron-Substituted γ Nickel OxyhydroxidesIEEE Journal of Solid-state Circuits, 114
J. Tarascon, G. Hull (1986)
Sodium intercalation into the layer oxides NaxMo2O4Solid State Ionics, 22
J. Leriche, Stéphane Hamelet, J. Shu, M. Morcrette, C. Masquelier, G. Ouvrard, Miloud Zerrouki, P. Soudan, S. Belin, E. Elkaïm, F. Baudelet (2010)
An Electrochemical Cell for Operando Study of Lithium Batteries Using Synchrotron RadiationJournal of The Electrochemical Society, 157
J. Thorne, R. Dunlap, M. Obrovac (2013)
Structure and Electrochemistry of NaxFexMn1-xO2 (1.0
(2012)
This journal is © The Royal Society of Chemistry
D. Yuan, Xiaohong Hu, Jiangfeng Qian, Feng Pei, Fayuan Wu, Rongjun Mao, X. Ai, Hanxi Yang, Yuliang Cao (2014)
P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 Cathode Material with High-capacity for Sodium-ion BatteryElectrochimica Acta, 116
D. Yuan, Wei He, Feng Pei, Fayuan Wu, Yue Wu, Jiangfeng Qian, Yuliang Cao, X. Ai, Hanxi Yang (2013)
Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium-ion batteriesJournal of Materials Chemistry, 1
N. Yabuuchi, H. Yoshida, S. Komaba (2012)
Crystal Structures and Electrode Performance of Alpha-NaFeO2 for Rechargeable Sodium BatteriesElectrochemistry, 80
A. Maazaz, C. Delmas, P. Hagenmuller (1983)
A study of the NaxTiO2 system by electrochemical deintercalationJournal of inclusion phenomena, 1
Hongli Zhu, K. Lee, Greg Hitz, Xiaogang Han, Yuanyuan Li, J. Wan, Steven Lacey, A. Cresce, K. Xu, E. Wachsman, Liangbing Hu (2014)
Free-standing Na(2/3)Fe(1/2)Mn(1/2)O(2)@graphene film for a sodium-ion battery cathode.ACS applied materials & interfaces, 6 6
N. Yabuuchi, Ryo Hara, K. Kubota, J. Paulsen, S. Kumakura, S. Komaba (2014)
A new electrode material for rechargeable sodium batteries: P2-type Na2/3[Mg0.28Mn0.72]O2 with anomalously high reversible capacityJournal of Materials Chemistry, 2
Xianfen Wang, Guandong Liu, Tatsumi Iwao, M. Okubo, A. Yamada (2014)
Role of Ligand-to-Metal Charge Transfer in O3-Type NaFeO2–NaNiO2 Solid Solution for Enhanced Electrochemical PropertiesJournal of Physical Chemistry C, 118
L. Guenne, P. Deniard, P. Biensan, C. Siret, R. Brec (2000)
Structural study of two layered phases in the NaxMnyO2 system. Electrochemical behavior of their lithium substituted derivativesJournal of Materials Chemistry, 10
C. Delmas, C. Fouassier, P. Hagenmuller (1980)
Structural classification and properties of the layered oxidesPhysica B-condensed Matter, 99
The electrochemical properties of the O3-type NaxMn1/3Fe2/3O2 (x = 0.77) phase used as positive electrode material in Na batteries were investigated in the 1.5–3.8 V, 1.5–4.0 V and 1.5–4.3 V ranges. We show that cycling the Na cells in a wider voltage range do not induce a significant gain on long term cycling as the discharge capacities reached for the three experiments are identical after the 14th cycle. The structural changes the material undergoes from 1.5 V (fully intercalated state) to 4.3 V were investigated by operando in situ X-ray powder diffraction (XRPD) and were further characterized by ex situ synchrotron XRPD. We show that the low amount of Mn3+ ions (≈33% of total Mn+ ions) is enough to induce a cooperative Jahn–Teller effect for all MO6 octahedra in the fully intercalated state. Upon deintercalation the material exhibits several structural transitions: O′3 → O3 → P3. Furthermore, several residual phases are observed during the experiment. In particular, a small part of the O3 type is not transformed to P3 but is always involved in the electrochemical process. To explain this behaviour the hypothesis of an inhomogeneity, which is not detected by XRD, is suggested. All phases converge into a poorly crystallized phase for x ≈ 0.15. The short interslab distance of the resulting phase strongly suggests an octahedral environment for the Na+ ions. X-ray absorption spectroscopy and 57Fe Mössbauer spectroscopy were used to confirm the activity of the Mn4+/Mn3+ and Fe4+/Fe3+ redox couples in the low and high voltage regions, respectively. 57Fe Mössbauer spectroscopy also showed an increase of the disorder into the material upon deintercalation.
Journal of Materials Chemistry A – Royal Society of Chemistry
Published: May 12, 2015
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.