Access the full text.
Sign up today, get DeepDyve free for 14 days.
M. Szczęśniak, Robert Brenstein, S. Cybulski, S. Scheiner (1990)
Potential energy surface for dispersion interaction in (H2O)2 and (HF)2The Journal of Physical Chemistry, 94
F. Angelis (2014)
Modeling Materials and Processes in Hybrid/Organic Photovoltaics: From Dye-Sensitized to Perovskite Solar CellsAccounts of Chemical Research, 47
I. Castelli, J. García‐Lastra, K. Thygesen, K. Jacobsen (2014)
BANDGAP CALCULATIONS AND TRENDS OF ORGANOMETAL HALIDE PEROVSKITESAPL Materials, 2
P. Umari, E. Mosconi, F. Angelis (2014)
Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 Perovskites for Solar Cell ApplicationsScientific Reports, 4
Feng Hao, C. Stoumpos, R. Chang, M. Kanatzidis (2014)
Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells.Journal of the American Chemical Society, 136 22
F. Brivio, K. Butler, A. Walsh, M. Schilfgaarde (2014)
Electronic structure of hybrid halide perovskite photovoltaic absorbersBulletin of the American Physical Society
W. Yin, Jihui Yang, Joongoo Kang, Yanfa Yan, S. Wei (2015)
Halide perovskite materials for solar cells: a theoretical reviewJournal of Materials Chemistry, 3
Minsung Kim, Jino Im, A. Freeman, J. Ihm, Hosub Jin (2014)
Switchable S = 1/2 and J = 1/2 Rashba bands in ferroelectric halide perovskitesProceedings of the National Academy of Sciences, 111
A. Amat, E. Mosconi, Enrico Ronca, C. Quarti, P. Umari, Md. Nazeeruddin, M. Grätzel, F. Angelis (2014)
Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting.Nano letters, 14 6
H. Jung, N. Park (2015)
Perovskite solar cells: from materials to devices.Small, 11 1
Y. Ogomi, A. Morita, S. Tsukamoto, Takahiro Saitho, Naotaka Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S. Pandey, T. Ma, S. Hayase (2014)
CH3NH3SnxPb(1-x)I3 Perovskite Solar Cells Covering up to 1060 nm.The journal of physical chemistry letters, 5 6
Nakita Noel, S. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. Haghighirad, A. Sadhanala, G. Eperon, Sandeep Pathak, M. Johnston, A. Petrozza, L. Herz, H. Snaith (2014)
Lead-free organic–inorganic tin halide perovskites for photovoltaic applicationsEnergy and Environmental Science, 7
I. Borriello, G. Cantele, D. Ninno (2008)
Ab initio investigation of hybrid organic-inorganic perovskites based on tin halidesPhysical Review B, 77
F. Chiarella, A. Zappettini, F. Licci, I. Borriello, G. Cantele, D. Ninno, A. Cassinese, R. Vaglio (2008)
Combined experimental and theoretical investigation of optical, structural and electronic properties of CH3NH3SnX3 thin films (X=Cl,Br)Physical Review B, 77
C. Stoumpos, C. Malliakas, M. Kanatzidis (2013)
Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties.Inorganic chemistry, 52 15
P. Umari, G. Stenuit, S. Baroni (2009)
GW quasiparticle spectra from occupied states onlyPhysical Review B, 81
Fan Zuo, Spencer Williams, Po-Wei Liang, Chu‐Chen Chueh, Chien‐Yi Liao, A. Jen (2014)
Binary‐Metal Perovskites Toward High‐Performance Planar‐Heterojunction Hybrid Solar CellsAdvanced Materials, 26
C. Quarti, E. Mosconi, F. Angelis (2014)
Interplay of Orientational Order and Electronic Structure in Methylammonium Lead Iodide: Implications for Solar Cell OperationChemistry of Materials, 26
Hui‐Seon Kim, Chang-Ryul Lee, J. Im, Ki-Beom Lee, T. Moehl, Arianna Marchioro, S. Moon, R. Humphry‐Baker, Jun‐Ho Yum, J. Moser, M. Grätzel, N. Park (2012)
Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%Scientific Reports, 2
Mingzhen Liu, M. Johnston, H. Snaith (2013)
Efficient planar heterojunction perovskite solar cells by vapour depositionNature, 501
I. Chung, J. Song, Jino Im, J. Androulakis, C. Malliakas, Hao Li, A. Freeman, J. Kenney, M. Kanatzidis (2012)
CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions.Journal of the American Chemical Society, 134 20
D. Vanderbilt (1990)
Soft self-consistent pseudopotentials in a generalized eigenvalue formalism.Physical review. B, Condensed matter, 41 11
T. Baikie, Yanan Fang, Jeannette Kadro, M. Schreyer, F. Wei, S. Mhaisalkar, M. Graetzel, T. White (2013)
Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applicationsJournal of Materials Chemistry, 1
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. Chiarotti, M. Cococcioni, I. Dabo, A. Corso, Stefano Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, Alfredo Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. Seitsonen, A. Smogunov, P. Umari, R. Wentzcovitch (2009)
QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materialsJournal of Physics: Condensed Matter, 21
Huanping Zhou, Qi Chen, Gang Li, Song Luo, T. Song, Hsin‐Sheng Duan, Z. Hong, Jingbi You, Yongsheng Liu, Yang Yang (2014)
Interface engineering of highly efficient perovskite solar cellsScience, 345
Yukari Takahashi, R. Obara, Zheng-zhong Lin, Yukihiro Takahashi, T. Naito, T. Inabe, S. Ishibashi, K. Terakura (2011)
Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity.Dalton transactions, 40 20
Yu Bai, I. Mora‐Seró, F. Angelis, J. Bisquert, Peng Wang (2014)
Titanium dioxide nanomaterials for photovoltaic applications.Chemical reviews, 114 19
Michael Lee, J. Teuscher, T. Miyasaka, T. Murakami, H. Snaith (2012)
Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide PerovskitesScience, 338
J. Noh, S. Im, J. Heo, T. Mandal, S. Seok (2013)
Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells.Nano letters, 13 4
D. Chadi (1977)
Special points for Brillouin-zone integrationsPhysical Review B, 16
E. Menéndez-Proupin, P. Palacios, P. Wahnón, J. Conesa (2014)
Self-consistent relativistic band structure of the CH3NH3PbI3 perovskitePhysical Review B, 90
J. Burschka, N. Pellet, S. Moon, R. Humphry‐Baker, P. Gao, M. Nazeeruddin, M. Grätzel (2013)
Sequential deposition as a route to high-performance perovskite-sensitized solar cellsNature, 499
J. Perdew, K. Burke, M. Ernzerhof (1996)
Generalized Gradient Approximation Made Simple.Physical review letters, 77 18
Yun Wang, T. Gould, J. Dobson, Haimin Zhang, H. Yang, X. Yao, Huijun Zhao (2014)
Density functional theory analysis of structural and electronic properties of orthorhombic perovskite CH3NH3PbI3.Physical chemistry chemical physics : PCCP, 16 4
N. Jeon, J. Noh, Young Kim, Woon Yang, Seungchan Ryu, S. Seok (2014)
Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells.Nature materials, 13 9
A. Poglitsch, D. Weber (1987)
Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter‐wave spectroscopyJournal of Chemical Physics, 87
Jing Feng, B. Xiao (2014)
Effective Masses and Electronic and Optical Properties of Nontoxic MASnX3 (X = Cl, Br, and I) Perovskite Structures as Solar Cell Absorber: A Theoretical Study Using HSE06Journal of Physical Chemistry C, 118
D. Egger, L. Kronik (2014)
Role of Dispersive Interactions in Determining Structural Properties of Organic-Inorganic Halide Perovskites: Insights from First-Principles Calculations.The journal of physical chemistry letters, 5 15
M. Rieger, M. Rieger, L. Steinbeck, I. White, H. Rojas, R. Godby (1998)
The GW space-time method for the self-energy of large systemsComputer Physics Communications, 117
J. Even, L. Pédesseau, J. Jancu, C. Katan (2014)
DFT and k · p modelling of the phase transitions of lead and tin halide perovskites for photovoltaic cellsphysica status solidi (RRL) – Rapid Research Letters, 8
Jing Feng (2014)
Mechanical properties of hybrid organic-inorganic CH3NH3BX3 (B = Sn, Pb; X = Br, I) perovskites for solar cell absorbersAPL Materials, 2
Feng Hao, C. Stoumpos, D. Cao, R. Chang, M. Kanatzidis (2014)
Lead-free solid-state organic–inorganic halide perovskite solar cellsNature Photonics, 8
Organohalide lead perovskites have attracted considerable interest among emerging photovoltaic technologies, delivering highly efficient solid-state solar cells. Despite the huge potential of this class of materials, the use of Pb-containing systems will likely hamper the wide spread take off of perovskite solar cells. The development of lead-free hybrid perovskites represents thus an important step in the exploitation of this promising technology. Very recently, the use of new mixed Pb–Sn MASnxPb(1−x)I3 perovskites has been reported, with a considerable increase in the extension of the solar spectrum absorption with respect to lead-halide perovskites, shifting the absorption onset down to the near-IR. In light of the anticipated potential of Sn-based organohalide perovskites in replacing lead-based materials, here we apply a recently developed computational approach to the description of mixed Sn–Pb compounds showing a range of compositions comparable to experimentally characterized compounds. For the investigated series of MASnxPb(1−x)I3 perovskites we find a continuous and monotonic variation of the energy levels, shifting at lower potentials; and band-gaps, which shift towards the near-IR, as the Sn content in the perovskite is increased. Notably, while we find slightly unbalanced electron/hole transport in the pure phases, Pb (Sn) materials being better electron (hole) transporters, for intermediate compositions an almost perfectly balanced charge carrier transport can be achieved, in line with recent experimental observations.
Journal of Materials Chemistry A – Royal Society of Chemistry
Published: Apr 22, 2015
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.