Access the full text.
Sign up today, get DeepDyve free for 14 days.
Colin Bailie, M. McGehee (2015)
High-efficiency tandem perovskite solar cellsMRS Bulletin, 40
(2015)
Wood, S
E. Mosconi, A. Amat, Md. Nazeeruddin, M. Grätzel, F. Angelis (2013)
First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic ApplicationsJournal of Physical Chemistry C, 117
M. Weber, M. Dignam (1984)
Efficiency of Splitting Water with Semiconducting PhotoelectrodesJournal of The Electrochemical Society, 131
Yixin Zhao, A. Nardes, K. Zhu (2014)
Solid-State Mesostructured Perovskite CH3NH3PbI3 Solar Cells: Charge Transport, Recombination, and Diffusion Length.The journal of physical chemistry letters, 5 3
N. Pellet, P. Gao, G. Gregori, Tae-Youl Yang, M. Nazeeruddin, J. Maier, M. Grätzel (2014)
Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting.Angewandte Chemie, 53 12
J. Heo, S. Im, J. Noh, T. Mandal, Choong‐Sun Lim, J. Chang, Yong Lee, Hi-jung Kim, A. Sarkar, Md. Nazeeruddin, M. Grätzel, S. Seok (2013)
Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductorsNature Photonics, 7
Yangyang Dang, Yang Liu, Youxuan Sun, Dongsheng Yuan, Xiaolong Liu, Weiqun Lu, Guangfeng Liu, Haibing Xia, X. Tao (2015)
Bulk crystal growth of hybrid perovskite material CH3NH3PbI3CrystEngComm, 17
Jeffrey Christians, J. Manser, P. Kamat (2015)
Best Practices in Perovskite Solar Cell Efficiency Measurements. Avoiding the Error of Making Bad Cells Look Good.The journal of physical chemistry letters, 6 5
M. Green, A. Ho-baillie, H. Snaith (2014)
The emergence of perovskite solar cellsNature Photonics, 8
O. Knop, R. Wasylishen, M. White, T. Cameron, M. Oort (1990)
Alkylammonium lead halides. Part 2. CH3NH3PbX3 (X = Cl, Br, I) perovskites: cuboctahedral halide cages with isotropic cation reorientationCanadian Journal of Chemistry, 68
F. Giordano, A. Abate, Juan Baena, Michael Saliba, Taisuke Matsui, S. Im, S. Zakeeruddin, M. Nazeeruddin, A. Hagfeldt, M. Graetzel (2016)
Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cellsNature Communications, 7
J. Haruyama, Keitaro Sodeyama, Liyuan Han, Y. Tateyama (2015)
First-Principles Study of Ion Diffusion in Perovskite Solar Cell Sensitizers.Journal of the American Chemical Society, 137 32
C. Stoumpos, C. Malliakas, M. Kanatzidis (2013)
Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties.Inorganic chemistry, 52 15
J. Im, Chang-Ryul Lee, Jin‐Wook Lee, Sang-Won Park, N. Park (2011)
6.5% efficient perovskite quantum-dot-sensitized solar cell.Nanoscale, 3 10
T. Jacobsson, T. Edvinsson (2014)
Quantum Confined Stark Effects in ZnO Quantum Dots Investigated with Photoelectrochemical MethodsJournal of Physical Chemistry C, 118
(2011)
Inorg
Woon Yang, J. Noh, N. Jeon, Young Kim, Seungchan Ryu, Jangwon Seo, S. Seok (2015)
High-performance photovoltaic perovskite layers fabricated through intramolecular exchangeScience, 348
C. Quarti, E. Mosconi, J. Ball, V. D'innocenzo, Chen Tao, S. Pathak, H. Snaith, A. Petrozza, F. Angelis (2016)
Structural and optical properties of methylammonium lead iodide across the tetragonal to cubic phase transition: implications for perovskite solar cellsEnergy and Environmental Science, 9
Andreas Binek, Fabian Hanusch, P. Docampo, T. Bein (2015)
Stabilization of the Trigonal High-Temperature Phase of Formamidinium Lead Iodide.The journal of physical chemistry letters, 6 7
E. Unger, E. Hoke, Colin Bailie, W. Nguyen, A. Bowring, Thomas Heumüller, M. Christoforo, M. McGehee (2014)
Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cellsEnergy and Environmental Science, 7
E. Edri, Saar Kirmayer, Michael Kulbak, G. Hodes, D. Cahen (2014)
Chloride Inclusion and Hole Transport Material Doping to Improve Methyl Ammonium Lead Bromide Perovskite-Based High Open-Circuit Voltage Solar Cells.The journal of physical chemistry letters, 5 3
S. Lv, S. Pang, Yuanyuan Zhou, N. Padture, Hao Hu, Li Wang, Xin-hong Zhou, Huimin Zhu, Lixue Zhang, Changshui Huang, G. Cui (2014)
One-step, solution-processed formamidinium lead trihalide (FAPbI(3-x)Cl(x)) for mesoscopic perovskite-polymer solar cells.Physical chemistry chemical physics : PCCP, 16 36
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka (2009)
Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.Journal of the American Chemical Society, 131 17
O. Janson, I. Rousochatzakis, A. Tsirlin, M. Belesi, A. Leonov, U. Rößler, J. Brink, H. Rosner (2014)
The quantum nature of skyrmions and half-skyrmions in Cu2OSeO3Nature Communications, 5
Colin Bailie, M. Christoforo, J. Mailoa, A. Bowring, E. Unger, W. Nguyen, J. Burschka, N. Pellet, J. Lee, M. Grätzel, R. Noufi, T. Buonassisi, A. Salleo, M. McGehee (2015)
Semi-transparent perovskite solar cells for tandems with silicon and CIGSEnergy and Environmental Science, 8
C. Yi, Jingshan Luo, S. Meloni, Ariadni Boziki, Negar Ashari-Astani, C. Grätzel, S. Zakeeruddin, U. Rothlisberger, M. Grätzel (2016)
Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cellsEnergy and Environmental Science, 9
Mattis Fondell, T. Jacobsson, M. Boman, T. Edvinsson (2014)
Optical quantum confinement in low dimensional hematiteJournal of Materials Chemistry, 2
W. Geng, Le Zhang, Yanning Zhang, W. Lau, Li‐Min Liu (2014)
First-Principles Study of Lead Iodide Perovskite Tetragonal and Orthorhombic Phases for PhotovoltaicsJournal of Physical Chemistry C, 118
Fabian Hanusch, E. Wiesenmayer, E. Mankel, Andreas Binek, Philipp Angloher, Christina Fraunhofer, Nadja Giesbrecht, J. Feckl, W. Jaegermann, D. Johrendt, T. Bein, P. Docampo (2014)
Efficient Planar Heterojunction Perovskite Solar Cells Based on Formamidinium Lead Bromide.The journal of physical chemistry letters, 5 16
Hui‐Seon Kim, N. Park (2014)
Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer.The journal of physical chemistry letters, 5 17
Lili Wang, Christopher McCleese, A. Kovalsky, Yixin Zhao, C. Burda (2014)
Femtosecond time-resolved transient absorption spectroscopy of CH3NH3PbI3 perovskite films: evidence for passivation effect of PbI2.Journal of the American Chemical Society, 136 35
A. Abate, Daniel Staff, Derek Hollman, H. Snaith, A. Walker (2014)
Influence of ionizing dopants on charge transport in organic semiconductors.Physical chemistry chemical physics : PCCP, 16 3
H. Snaith (2013)
Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar CellsJournal of Physical Chemistry Letters, 4
Manda Xiao, Fuzhi Huang, Wenchao Huang, Yasmina Dkhissi, Ye Zhu, J. Etheridge, Angus Gray-Weale, U. Bach, Yi-bing Cheng, L. Spiccia (2014)
A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells.Angewandte Chemie, 53 37
Hyosung Choi, Jaeki Jeong, Hak‐Beom Kim, Seongbeom Kim, Bright Walker, Gi-Hwan Kim, Jin Kim (2014)
Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cellsNano Energy, 7
V. Somsongkul, F. Lang, A. Jeong, M. Rusu, M. Arunchaiya, T. Dittrich (2014)
Hole blocking PbI2/CH3NH3PbI3 interfacephysica status solidi (RRL) – Rapid Research Letters, 08
C. Quarti, E. Mosconi, F. Angelis (2014)
Interplay of Orientational Order and Electronic Structure in Methylammonium Lead Iodide: Implications for Solar Cell OperationChemistry of Materials, 26
(2015)
Asc Apl
Minglei Hu, Linfeng Liu, Anyi Mei, Ying Yang, Tongfa Liu, Hongwei Han (2014)
Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with a broad light harvester NH2CHNH2PbI3Journal of Materials Chemistry, 2
V. Goldschmidt (1926)
Die Gesetze der KrystallochemieNaturwissenschaften, 14
K. Momma, F. Izumi (2011)
VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology dataJournal of Applied Crystallography, 44
T. Jacobsson, T. Edvinsson (2013)
A Spectroelectrochemical Method for Locating Fluorescence Trap States in Nanoparticles and Quantum DotsJournal of Physical Chemistry C, 117
Yixin Zhao, K. Zhu (2014)
Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells.The journal of physical chemistry letters, 5 23
A. Calloni, A. Abate, G. Bussetti, G. Berti, R. Yivlialin, F. Ciccacci, L. Duò (2015)
Stability of Organic Cations in Solution-Processed CH3NH3PbI3 Perovskites: Formation of Modified Surface LayersJournal of Physical Chemistry C, 119
Michael Lee, J. Teuscher, T. Miyasaka, T. Murakami, H. Snaith (2012)
Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide PerovskitesScience, 338
D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Yin Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, Xin Zhang, P. Dowben, O. Mohammed, E. Sargent, O. Bakr (2015)
Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystalsScience, 347
J. Perdew, K. Burke, M. Ernzerhof (1996)
Generalized Gradient Approximation Made Simple.Physical review letters, 77 18
W. Shockley, H. Queisser (1961)
Detailed Balance Limit of Efficiency of p‐n Junction Solar CellsJournal of Applied Physics, 32
J. Heo, Dae Song, S. Im (2014)
Planar CH3NH3PbBr3 Hybrid Solar Cells with 10.4% Power Conversion Efficiency, Fabricated by Controlled Crystallization in the Spin‐Coating ProcessAdvanced Materials, 26
H. Nakanotani, K. Masui, Jun-ichi Nishide, Takumi Shibata, C. Adachi (2014)
CORRIGENDUM: Promising operational stability of high-efficiency organic light-emitting diodes based on thermally activated delayed fluorescenceScientific Reports, 4
S. Aharon, B. Cohen, L. Etgar (2014)
Hybrid Lead Halide Iodide and Lead Halide Bromide in Efficient Hole Conductor Free Perovskite Solar CellJournal of Physical Chemistry C, 118
E. Hoke, Daniel Slotcavage, E. Dohner, A. Bowring, H. Karunadasa, M. McGehee (2014)
Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics† †Electronic supplementary information (ESI) available: Experimental details, PL, PDS spectra and XRD patterns. See DOI: 10.1039/c4sc03141e Click here for additional data file.Chemical Science, 6
P. Umari, E. Mosconi, F. Angelis (2014)
Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 Perovskites for Solar Cell ApplicationsScientific Reports, 4
N. McKinnon, D. Reeves, M. Akabas (2011)
5-HT3 receptor ion size selectivity is a property of the transmembrane channel, not the cytoplasmic vestibule portalsThe Journal of General Physiology, 138
A. Sadhanala, F. Deschler, Tudor Thomas, S. Dutton, Karl Goedel, Fabian Hanusch, M. Lai, U. Steiner, T. Bein, P. Docampo, D. Cahen, R. Friend (2014)
Preparation of Single-Phase Films of CH3NH3Pb(I1-xBrx)3 with Sharp Optical Band Edges.The journal of physical chemistry letters, 5 15
A. Abate, T. Leijtens, S. Pathak, J. Teuscher, R. Avolio, M. Errico, James Kirkpatrik, J. Ball, P. Docampo, I. McPherson, H. Snaith (2013)
Lithium salts as "redox active" p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells.Physical chemistry chemical physics : PCCP, 15 7
Marina Filip, G. Eperon, H. Snaith, F. Giustino (2014)
Steric engineering of metal-halide perovskites with tunable optical band gapsNature Communications, 5
Anubhav Jain, S. Ong, G. Hautier, Wei Chen, W. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K. Persson (2013)
Commentary: The Materials Project: A materials genome approach to accelerating materials innovationAPL Materials, 1
T. Jacobsson, T. Edvinsson (2012)
Photoelectrochemical Determination of the Absolute Band Edge Positions as a Function of Particle Size for ZnO Quantum DotsJournal of Physical Chemistry C, 116
W. Marsden (2012)
I and J
S. Albrecht, Michael Saliba, J. Baena, F. Lang, Lukas Kegelmann, M. Mews, L. Steier, A. Abate, J. Rappich, L. Korte, R. Schlatmann, M. Nazeeruddin, A. Hagfeldt, M. Grätzel, B. Rech (2016)
Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperatureEnergy and Environmental Science, 9
I. Almansouri, A. Ho-baillie, M. Green (2015)
Ultimate efficiency limit of single-junction perovskite and dual-junction perovskite/silicon two-terminal devicesJapanese Journal of Applied Physics, 54
H. Snaith, A. Abate, J. Ball, G. Eperon, T. Leijtens, Nakita Noel, S. Stranks, Jacob Wang, K. Wojciechowski, Wei Zhang (2014)
Anomalous Hysteresis in Perovskite Solar Cells.The journal of physical chemistry letters, 5 9
M. Pazoki, N. Nafari, N. Taghavinia (2014)
Ab initio study of electronic effects in the ZnO/TiO2 core/shell interface: application in dye sensitized solar cellsRSC Advances, 4
(1926)
The laws of crystal chemistry
MD KINAMI, I. Miyazaki, Mdi
AND T
Pengjun Zhao, Jinbao Xu, Xiaoyu Dong, Lei Wang, Wei Ren, L. Bian, Aimin Chang (2015)
Large-Size CH3NH3PbBr3 Single Crystal: Growth and In Situ Characterization of the Photophysics Properties.The journal of physical chemistry letters, 6 13
Konrad Domanski, W. Tress, T. Moehl, Michael Saliba, M. Nazeeruddin, M. Grätzel (2015)
Working Principles of Perovskite Photodetectors: Analyzing the Interplay Between Photoconductivity and Voltage‐Driven Energy‐Level AlignmentAdvanced Functional Materials, 25
F. Deschler, Michael Price, Sandeep Pathak, L. Klintberg, David-Dominik Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. Stranks, H. Snaith, M. Atatüre, R. Phillips, R. Friend (2014)
High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors.The journal of physical chemistry letters, 5 8
Qi Chen, Huanping Zhou, Tze‐Bin Song, Song Luo, Z. Hong, Hsin‐Sheng Duan, L. Dou, Yongsheng Liu, Yang Yang (2014)
Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells.Nano letters, 14 7
P. Löper, S. Moon, S. Nicolas, B. Niesen, M. Ledinský, S. Nicolay, J. Bailat, Jun‐Ho Yum, S. Wolf, C. Ballif (2015)
Organic-inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells.Physical chemistry chemical physics : PCCP, 17 3
Qi Chen, Huanping Zhou, Z. Hong, Song Luo, Hsin‐Sheng Duan, Hsin-Hua Wang, Yongsheng Liu, Gang Li, Yang Yang (2014)
Planar heterojunction perovskite solar cells via vapor-assisted solution process.Journal of the American Chemical Society, 136 2
A. Jena, Hsin-Wei Chen, Atsushi Kogo, Y. Sanehira, M. Ikegami, T. Miyasaka (2015)
The Interface between FTO and the TiO2 Compact Layer Can Be One of the Origins to Hysteresis in Planar Heterojunction Perovskite Solar Cells.ACS applied materials & interfaces, 7 18
(2014)
Angew
and as an in
Jin‐Wook Lee, Deok-Hwan Kim, Hui‐Seon Kim, Seungkil Seo, Sung Cho, N. Park (2015)
Formamidinium and Cesium Hybridization for Photo‐ and Moisture‐Stable Perovskite Solar CellAdvanced Energy Materials, 5
Rafael Sánchez, Victoria González‐Pedro, Jin‐Wook Lee, N. Park, Y. Kang, I. Mora‐Seró, J. Bisquert (2014)
Slow Dynamic Processes in Lead Halide Perovskite Solar Cells. Characteristic Times and Hysteresis.The journal of physical chemistry letters, 5 13
M. Hu, Cheng Bi, Yong-bo Yuan, Zhengguo Xiao, Qingfeng Dong, Yuchuan Shao, Jinsong Huang (2015)
Distinct exciton dissociation behavior of organolead trihalide perovskite and excitonic semiconductors studied in the same system.Small, 11 18
G. Eperon, S. Stranks, C. Menelaou, M. Johnston, L. Herz, H. Snaith (2014)
Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cellsEnergy and Environmental Science, 7
D. Weber (1978)
CH3NH3SnBrxI3-x (x = 0-3), ein Sn(II)-System mit kubischer Perowskitstruktur / CH3NH3SnBrxI3-x(x = 0-3), a Sn(II)-System with Cubic Perovskite StructureZeitschrift für Naturforschung B, 33
Dongqin Bi, W. Tress, M. Dar, P. Gao, Jingshan Luo, Clémentine Renevier, K. Schenk, A. Abate, F. Giordano, J. Baena, Jean-David Décoppet, S. Zakeeruddin, M. Nazeeruddin, M. Grätzel, A. Hagfeldt, PbI Fai (2016)
Efficient luminescent solar cells based on tailored mixed-cation perovskitesScience Advances, 2
J. Baena, L. Steier, W. Tress, Michael Saliba, Stefanie Neutzner, Stefanie Neutzner, Taisuke Matsui, F. Giordano, T. Jacobsson, A. Kandada, S. Zakeeruddin, A. Petrozza, A. Abate, M. Nazeeruddin, M. Grätzel, A. Hagfeldt (2015)
Highly efficient planar perovskite solar cells through band alignment engineeringEnergy and Environmental Science, 8
J. Azpiroz, E. Mosconi, J. Bisquert, F. Angelis (2015)
Defect migration in methylammonium lead iodide and its role in perovskite solar cell operationEnergy and Environmental Science, 8
C. Sheng, Chuang Zhang, Y. Zhai, Kamil Mielczarek, Weiwei Wang, Wanli Ma, A. Zakhidov, Z. Vardeny (2015)
Exciton versus free carrier photogeneration in organometal trihalide perovskites probed by broadband ultrafast polarization memory dynamics.Physical review letters, 114 11
Qingfeng Dong, Yanjun Fang, Yuchuan Shao, P. Mulligan, J. Qiu, L. Cao, Jinsong Huang (2015)
Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystalsScience, 347
T. Jacobsson, L. Schwan, M. Ottosson, A. Hagfeldt, T. Edvinsson (2015)
Determination of Thermal Expansion Coefficients and Locating the Temperature-Induced Phase Transition in Methylammonium Lead Perovskites Using X-ray Diffraction.Inorganic chemistry, 54 22
D. Weber (1978)
CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur / CH3NH3PbX3, a Pb(II)-System with Cubic Perovskite StructureZeitschrift für Naturforschung B, 33
T. Jacobsson, M. Pazoki, A. Hagfeldt, T. Edvinsson (2015)
Goldschmidt’s Rules and Strontium Replacement in Lead Halogen Perovskite Solar Cells: Theory and Preliminary Experiments on CH3NH3SrI3Journal of Physical Chemistry C, 119
M. Lapine, I. Shadrivov, Y. Kivshar (2012)
Wide-band negative permeability of nonlinear metamaterialsScientific Reports, 2
Zhi‐Kuang Tan, Reza Moghaddam, M. Lai, P. Docampo, R. Higler, F. Deschler, Michael Price, A. Sadhanala, L. Pazos, D. Credgington, Fabian Hanusch, T. Bein, H. Snaith, R. Friend (2014)
Bright light-emitting diodes based on organometal halide perovskite.Nature nanotechnology, 9 9
T. Jacobsson, T. Edvinsson (2011)
Absorption and fluorescence spectroscopy of growing ZnO quantum dots: size and band gap correlation and evidence of mobile trap states.Inorganic chemistry, 50 19
M. Filipič, P. Löper, B. Niesen, S. Wolf, J. Krč, C. Ballif, M. Topič, H. Shockley, Queisser, K Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, S. Okamoto, T. Mishima, N. Matsubara, S Bremner, M. Levy, C. Honsberg, D Xiong, W. Chen, L Dou, J. You, J. Yang, C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, Y. Yang, X Wang, G. Koleilat, J. Tang, H. Liu, I. Kramer, R. Debnath, L. Brzozowski, D. Barkhouse, L. Levina, S. Hoogland, E. Sargent, W.-S Jeong, J.-W. Lee, S. Jung, J. Yun, Nam‐Gyu Park, G Barber, P. Hoertz, S.-H Lee, N. Abrams, J. Mikulca, T. Mallouk, P. Liska, S. Zakeeruddin, M. Grätzel, A. Ho-baillie, M. Green, H. Seo, D.-H. Kim, S. Kwon, M. Song, M.-S Choi, S. Ryu, H. Lee, Y. Park, J.-D Kwon, K.-S Nam, Y. Jeong, J.-W Kang, C. Kim, C Bailie, M. Christoforo, J. Mailoa, A. Bowring, E. Unger, W. Nguyen, J. Burschka, N. Pellet, J. Lee, R. Noufi, T. Buonassisi, A. Salleo, M. McGehee, Semi, P Löper, S. Moon, S. Nicolas, B. Niesen, M. Ledinský, S. Nicolay, J. Bailat, J. Yum, S. Wolf, C. Ballif, O. Gershon, C. Gunawan, S. Sturdevant, B Guha, H Zhou, Q. Chen, S. Luo, T. Song, H. Duan, Z. Hong, Y. Liu, Photovoltaics, M Lee, J. Teuscher, T. Miyasaka, T. Murakami, H. Snaith, D. Wolf, J. Holovský, P. Löper, F. Haug, J Noh, S. Im, J. Heo, T. Mandal, S. Seok, N Jeon, H. Lee, Y. Kim, J. Seo, J. Noh, J. Lee, S. Nicolás, Z. Remeš, B Schneider, N. Lal, S. Baker-Finch, T. White, C.-W Chen, S.-Y Hsiao, C.-Y Chen, H.-W Kang, Z.-Y Huang, H.-W Lin, B. Niesen, J. Werner, M. Filipič, M. Topič, Y. Yum, Q Chen, H. Zhou, H. Wang, Planar, M Liu, M. Johnston, M Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, Z Holman, B Lipovšek, J. Krč, S Baker-Finch, K. McIntosh, J Eisenlohr, J. Benick, M. Peters, B. Bläsi, J. Goldschmidt, M. Hermle, M Bonnet-Eymard, M. Boccard, G. Bugnon, F. Sculati‐Meillaud, M. Despeisse, Optimized, J Heo, C.-S Lim, J. Chang, Y. Lee, H. Kim, A. Sarkar, M. Nazeeruddin, S. Seok, A. Descoeudres, F. Smole, Infrared Light, M Topič, A. Čampa, M. Berginc, U. Krašovec, U. Krašovec, J Springer, A. Poruba, M. Vaněček, A Moulé, M. Kaiser, H. Klesper, D. Huang, K. Meerholz, Optical, L. Barraud, F. Fernandez, J. Seif, C Momblona, O. Malinkiewicz, C. Roldán-Carmona, A. Soriano, L. Gil-Escrig, E. Bandiello, M. Scheepers, E. Edri, H. Bolink
Ch 3 Nh 3 Pbi 3 Perovskite / Silicon Tandem Solar Cells: Characterization Based Optical Simulations
Michael Kulbak, D. Cahen, G. Hodes (2015)
How Important Is the Organic Part of Lead Halide Perovskite Photovoltaic Cells? Efficient CsPbBr3 Cells.The journal of physical chemistry letters, 6 13
Jin‐Wook Lee, D. Seol, An-Na Cho, N. Park (2014)
High‐Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3Advanced Materials, 26
N. Jeon, J. Noh, Woon Yang, Young Kim, Seungchan Ryu, Jangwon Seo, S. Seok (2015)
Compositional engineering of perovskite materials for high-performance solar cellsNature, 517
Meltem Aygüler, Michael Weber, Bianka Puscher, D. Medina, P. Docampo, R. Costa (2015)
Light-Emitting Electrochemical Cells Based on Hybrid Lead Halide Perovskite NanoparticlesJournal of Physical Chemistry C, 119
Laboratory of Photomolecular Science and Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne. Certified efficiency measurement by the laboratories of Newport Corporation
S. Pang, Hao Hu, Jiliang Zhang, S. Lv, Yaming Yu, Feng Wei, Tian-shi Qin, Hongxia Xu, Zhihong Liu, G. Cui (2014)
NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar CellsChemistry of Materials, 26
J. Burschka, N. Pellet, S. Moon, R. Humphry‐Baker, P. Gao, M. Nazeeruddin, M. Grätzel (2013)
Sequential deposition as a route to high-performance perovskite-sensitized solar cellsNature, 499
T. Koh, Kunwu Fu, Yanan Fang, Shi Chen, T. Sum, N. Mathews, S. Mhaisalkar, P. Boix, T. Baikie (2014)
Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar CellsJournal of Physical Chemistry C, 118
N. Jeon, J. Noh, Young Kim, Woon Yang, Seungchan Ryu, S. Seok (2014)
Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells.Nature materials, 13 9
Huijie Yu, Feng Wang, Fangyan Xie, Wenwu Li, Jian Chen, N. Zhao (2014)
The Role of Chlorine in the Formation Process of “CH3NH3PbI3‐xClx” PerovskiteAdvanced Functional Materials, 24
M. Filipič, P. Löper, B. Niesen, S. Wolf, J. Krč, C. Ballif, M. Topič (2015)
CH(3)NH(3)PbI(3) perovskite / silicon tandem solar cells: characterization based optical simulations.Optics express, 23 7
J. Frost, K. Butler, A. Walsh (2014)
Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cellsAPL Materials, 2
C. Roldán-Carmona, P. Gratia, I. Zimmermann, G. Grancini, P. Gao, M. Graetzel, M. Nazeeruddin (2015)
High efficiency methylammonium lead triiodide perovskite solar cells: the relevance of non-stoichiometric precursorsEnergy and Environmental Science, 8
N. Kedem, Thomas Brenner, Michael Kulbak, N. Schaefer, S. Levcenko, I. Levine, D. Abou‐Ras, G. Hodes, D. Cahen (2015)
Light-Induced Increase of Electron Diffusion Length in a p-n Junction Type CH3NH3PbBr3 Perovskite Solar Cell.The journal of physical chemistry letters, 6 13
P. Schulz, E. Edri, Saar Kirmayer, G. Hodes, D. Cahen, A. Kahn (2014)
Interface energetics in organo-metal halide perovskite-based photovoltaic cellsEnergy and Environmental Science, 7
Lead halide perovskites have attracted considerable interest as photoabsorbers in PV-applications over the last few years. The most studied perovskite material achieving high photovoltaic performance has been methyl ammonium lead iodide, CH3NH3PbI3. Recently the highest solar cell efficiencies have, however, been achieved with mixed perovskites where iodide and methyl ammonium partially have been replaced by bromide and formamidinium. In this work, the mixed perovskites were explored in a systematic way by manufacturing devices where both iodide and methyl ammonium were gradually replaced by bromide and formamidinium. The absorption and the emission behavior as well as the crystallographic properties were explored for the perovskites in this compositional space. The band gaps as well as the crystallographic structures were extracted. Small changes in the composition of the perovskite were found to have a large impact on the properties of the materials and the device performance. In the investigated compositional space, cell efficiencies, for example, vary from a few percent up to 20.7%. From the perspective of applications, exchanging iodide with bromide is especially interesting as it allows tuning of the band gap from 1.5 to 2.3 eV. This is highly beneficial for tandem applications, and an empirical expression for the band gap as a function of composition was determined. Exchanging a small amount of iodide with bromide is found to be highly beneficial, whereas a larger amount of bromide in the perovskite was found to cause intense sub band gap photoemission with detrimental results for the device performance. This could be caused by the formation of a small amount of an iodide rich phase with a lower band gap, even though such a phase was not observed in diffraction experiments. This shows that stabilizing the mixed perovskites will be an important task in order to get the bromide rich perovskites, which has a higher band gap, to reach the same high performance obtained with the best compositions.
Energy & Environmental Science – Royal Society of Chemistry
Published: May 9, 2016
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.