Access the full text.
Sign up today, get DeepDyve free for 14 days.
I. Jung, M. Pelton, R. Piner, D. Dikin, S. Stankovich, Supinda Watcharotone, M. Hausner, R. Ruoff (2007)
Simple Approach for High-Contrast Optical Imaging and Characterization of Graphene-Based SheetsNano Letters, 7
(2008)
Suspended graphene: a bridge to the Dirac point
SUPARNA DUTTASINHA, K. Novoselov (2007)
The rise of graphene.Nature materials, 6 3
J. Meyer, SUPARNA DUTTASINHA, M. Katsnelson, K. Novoselov, D. Obergfell, S. Roth, Ç. Girit, A. Zettl (2007)
On the roughness of single- and bi-layer graphene membranesSolid State Communications, 143
L. Benedict, N. Chopra, M. Cohen, A. Zettl, S. Louie, V. Crespi (1998)
MICROSCOPIC DETERMINATION OF THE INTERLAYER BINDING ENERGY IN GRAPHITEChemical Physics Letters, 286
S. Piscanec, M. Lazzeri, F. Mauri, A. Ferrari, J. Robertson (2004)
Kohn anomalies and electron-phonon interactions in graphite.Physical review letters, 93 18
Xiaoling Li, Xinran Wang, Li Zhang, Sangwon Lee, H. Dai (2008)
Chemically Derived, Ultrasmooth Graphene Nanoribbon SemiconductorsScience, 319
I. Palchan, D. Davidov, H. Selig (1982)
Intercalation compounds of graphiteSynthetic Metals, 5
P. Sutter, J. Flege, E. Sutter (2008)
Epitaxial graphene on ruthenium.Nature materials, 7 5
C. Furtado, U. Kim, H. Gutiérrez, L. Pan, E. Dickey, P. Eklund (2004)
Debundling and dissolution of single-walled carbon nanotubes in amide solvents.Journal of the American Chemical Society, 126 19
V. Nicolosi, D. Vrbanic, A. Mrzel, J. Mccauley, S. O'Flaherty, C. McGuinness, G. Compagnini, D. Mihailovic, W. Blau, J. Coleman (2005)
Solubility of Mo6S4.5I4.5 nanowires in common solvents: a sedimentation study.The journal of physical chemistry. B, 109 15
K. Novoselov, A. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, A. Firsov (2005)
Two-dimensional gas of massless Dirac fermions in grapheneNature, 438
K. Novoselov, SUPARNA DUTTASINHA, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, A. Firsov (2004)
Electric Field Effect in Atomically Thin Carbon FilmsScience, 306
M. Hodak, L. Girifalco (2001)
Fullerenes inside carbon nanotubes and multi-walled carbon nanotubes: optimum and maximum sizesChemical Physics Letters, 350
S. Bergin, V. Nicolosi, S. Giordani, A. Gromard, L. Carpenter, W. Blau, J. Coleman (2007)
Exfoliation in ecstasy: liquid crystal formation and concentration-dependent debundling observed for single-wall nanotubes dispersed in the liquid drug γ-butyrolactoneNanotechnology, 18
T. Ackermann (1973)
Regular and Related Solutions, 84
A. Parga, F. Calleja, B. Borca, M. Passeggi, J. Hinarejos, F. Guinea, R. Miranda (2007)
Periodically rippled graphene: growth and spatially resolved electronic structure.Physical review letters, 100 5
S. Stankovich, D. Dikin, R. Piner, K. Kohlhaas, A. Kleinhammes, Yuanyuan Jia, Yue Wu, S. Nguyen, R. Ruoff (2007)
Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxideCarbon, 45
A. Ferrari, J. Robertson (2000)
Interpretation of Raman spectra of disordered and amorphous carbonPhysical Review B, 61
T. Tchoubar, J. Conard (1992)
Intercalation CompoundsMaterials Science Forum
S. Niyogi, E. Bekyarova, M. Itkis, Jared McWilliams, M. Hamon, R. Haddon (2006)
Solution properties of graphite and graphene.Journal of the American Chemical Society, 128 24
Xu Du, I. Skachko, A. Barker, E. Andrei (2008)
Approaching ballistic transport in suspended graphene.Nature nanotechnology, 3 8
N. Tsierkezos, A. Filippou (2006)
Thermodynamic investigation of N,N-dimethylformamide/toluene binary mixtures in the temperature range from 278.15 to 293.15 KThe Journal of Chemical Thermodynamics, 38
A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. Saha, U. Waghmare, K. Novoselov, H. Krishnamurthy, SUPARNA DUTTASINHA, A. Ferrari, A. Sood (2007)
Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor.Nature nanotechnology, 3 4
T. Hasan, V. Scardaci, P. Tan, A. Rozhin, W. Milne, A. Ferrari (2007)
Stabilization and Debundling of single-wall carbon nanotube dispersions in N-methyl-2-pyrrolidone (NMP) by polyvinylpyrrolidone (PVP)Journal of Physical Chemistry C, 111
K. Novoselov, Z. Jiang, Y. Zhang, S. Morozov, H. Stormer, U. Zeitler, J. Maan, G. Boebinger, P. Kim, SUPARNA DUTTASINHA (2007)
Room-Temperature Quantum Hall Effect in GrapheneScience, 315
S. Giordani, S. Bergin, V. Nicolosi, S. Lebedkin, M. Kappes, W. Blau, J. Coleman (2006)
Debundling of single-walled nanotubes by dilution: observation of large populations of individual nanotubes in amide solvent dispersions.The journal of physical chemistry. B, 110 32
P. Blake, P. Brimicombe, R. Nair, T. Booth, D. Jiang, F. Schedin, L. Ponomarenko, S. Morozov, H. Gleeson, E. Hill, SUPARNA DUTTASINHA, K. Novoselov (2008)
Graphene-based liquid crystal device.Nano letters, 8 6
S. Horiuchi, Takuya Gotou, M. Fujiwara, R. Sotoaka, M. Hirata, K. Kimoto, T. Asaka, T. Yokosawa, Y. Matsui, Kenji Watanabe, M. Sekita (2003)
Carbon Nanofilm with a New Structure and PropertyJapanese Journal of Applied Physics, 42
C. Thomsen, S. Reich (2000)
Double resonant raman scattering in graphitePhysical review letters, 85 24
D. Dikin, S. Stankovich, E. Zimney, R. Piner, G. Dommett, G. Evmenenko, S. Nguyen, R. Ruoff (2007)
Preparation and characterization of graphene oxide paperNature, 448
J. Lyklema (1999)
The surface tension of pure liquids. Thermodynamic components and corresponding statesColloids and Surfaces A: Physicochemical and Engineering Aspects, 156
C. Berger, Zhi-min Song, Xuebin Li, Xiaosong Wu, Nate Brown, C. Naud, D. Mayou, Tianbo Li, J. Hass, A. Marchenkov, E. Conrad, P. First, W. Heer (2006)
Electronic Confinement and Coherence in Patterned Epitaxial GrapheneScience, 312
A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov, S. Roth, SUPARNA DUTTASINHA (2006)
Raman spectrum of graphene and graphene layers.Physical review letters, 97 18
MS Dresselhaus, G Dresselhaus (1981)
Intercalation compounds of graphiteAdv. Phys., 30
H. Becerril, J. Mao, Zunfeng Liu, R. Stoltenberg, Zhenan Bao, Yongsheng Chen (2008)
Evaluation of solution-processed reduced graphene oxide films as transparent conductors.ACS nano, 2 3
Shuyun Zhou, Shuyun Zhou, D. Siegel, D. Siegel, A. Fedorov, F. Gabaly, A. Schmid, A. Neto, D. Lee, D. Lee, A. Lanzara, A. Lanzara (2008)
Origin of the energy bandgap in epitaxial grapheneNature Materials, 7
T. Ohta, F. Gabaly, A. Bostwick, J. McChesney, K. Emtsev, A. Schmid, T. Seyller, K. Horn, E. Rotenberg (2007)
Morphology of graphene thin film growth on SiC(0001)New Journal of Physics, 10
B. Landi, H. Ruf, J. Worman, R. Raffaelle (2004)
Effects of Alkyl Amide Solvents on the Dispersion of Single-Wall Carbon NanotubesJournal of Physical Chemistry B, 108
SD Bergin (2007)
Towards solutions of SWNT in common solventsAdv. Mater., 20
S. Morozov, K. Novoselov, M. Katsnelson, F. Schedin, D. Elias, J. Jaszczak, SUPARNA DUTTASINHA (2007)
Giant intrinsic carrier mobilities in graphene and its bilayer.Physical review letters, 100 1
S. Stankovich, D. Dikin, G. Dommett, K. Kohlhaas, E. Zimney, E. Stach, R. Piner, S. Nguyen, R. Ruoff (2006)
Graphene-based composite materialsNature, 442
K. Bolotin, K. Sikes, Zhigang Jiang, M. Klíma, G. Fudenberg, J. Hone, P. Kim, H. Stormer (2008)
Ultrahigh electron mobility in suspended grapheneSolid State Communications, 146
Jannik Meyer, A. Geim, M. Katsnelson, K. Novoselov, Tim Booth, S. Roth (2007)
The structure of suspended graphene sheetsNature, 446
J. Niedziela (2008)
Scanning Tunneling Microscopy
S. Bergin, V. Nicolosi, P. Streich, S. Giordani, Zhenyu Sun, A. Windle, P. Ryan, N. Niraj, Zhi‐Tao Wang, L. Carpenter, W. Blau, J. Boland, J. Hamilton, J. Coleman (2008)
Towards Solutions of Single‐Walled Carbon Nanotubes in Common SolventsAdvanced Materials, 20
S. Marchini, S. Günther, J. Wintterlin (2007)
Scanning tunneling microscopy of graphene on Ru(0001)Physical Review B, 76
F. Tuinstra, J. Koenig (1970)
Raman Spectrum of GraphiteJournal of Chemical Physics, 53
Dan Li, M. Müller, S. Gilje, R. Kaner, G. Wallace (2008)
Processable aqueous dispersions of graphene nanosheets.Nature nanotechnology, 3 2
D. Abergel, V. Fal’ko (2006)
Optical and magneto-optical far-infrared properties of bilayer graphene.Physical Review B, 75
P. Blake, K. Novoselov, A. Neto, D. Jiang, R. Yang, T. Booth, SUPARNA DUTTASINHA, E. Hill (2007)
Making graphene visibleApplied Physics Letters, 91
Soo‐Hwan Jeong, Ok-Joo Lee, Kun-Hong Lee, S. Oh, C. Park (2002)
Preparation of Aligned Carbon Nanotubes with Prescribed Dimensions: Template Synthesis and Sonication Cutting ApproachChemistry of Materials, 14
L. Stiel (1971)
Regular and Related Solutions, Joel H. Hildebrand, John M. Prausnitz, and Rob–ert L. Scott, Van Nostrand Reinhold Co., New York (1 970). 228 pages. $10.95.Aiche Journal, 17
K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, SUPARNA DUTTASINHA (2005)
Two-dimensional atomic crystals.Proceedings of the National Academy of Sciences of the United States of America, 102 30
S. Horiuchi, Takuya Gotou, M. Fujiwara, T. Asaka, T. Yokosawa, Y. Matsui (2004)
Single graphene sheet detected in a carbon nanofilmApplied Physics Letters, 84
L. Viculis, Julia Mack, R. Kaner (2003)
A Chemical Route to Carbon NanoscrollsScience, 299
A. Ferrari, S. Rodil, J. Robertson (2003)
Interpretation of infrared and Raman spectra of amorphous carbon nitridesPhysical Review B, 67
L. Girifalco, R. Good (1957)
A Theory for the Estimation of Surface and Interfacial Energies. I. Derivation and Application to Interfacial TensionThe Journal of Physical Chemistry, 61
Yuanbo Zhang, Yan-Wen Tan, H. Stormer, P. Kim (2005)
Experimental observation of the quantum Hall effect and Berry's phase in grapheneNature, 438
Guohua Chen, Wengui Weng, Dajun Wu, Cuiling Wu, Jinrong Lu, Pingping Wang, Xiangfeng Chen (2004)
Preparation and characterization of graphite nanosheets from ultrasonic powdering techniqueCarbon, 42
Xuan Wang, L. Zhi, K. Müllen (2008)
Transparent, conductive graphene electrodes for dye-sensitized solar cells.Nano letters, 8 1
D. Knight, W. White (1989)
Characterization of diamond films by Raman spectroscopyJournal of Materials Research, 4
F. Blighe, Y. Hernandez, W. Blau, J. Coleman (2007)
Observation of Percolation‐like Scaling – Far from the Percolation Threshold – in High Volume Fraction, High Conductivity Polymer‐Nanotube Composite FilmsAdvanced Materials, 19
C. Casiraghi, S. Pisana, K. Novoselov, SUPARNA DUTTASINHA, A. Ferrari (2007)
Raman Fingerprint of Charged Impurities in GrapheneApplied Physics Letters, 91
S. Pisana, M. Lazzeri, C. Casiraghi, K. Novoselov, SUPARNA DUTTASINHA, A. Ferrari, F. Mauri (2007)
Breakdown of the adiabatic Born-Oppenheimer approximation in graphene.Nature materials, 6 3
G. Eda, G. Fanchini, M. Chhowalla (2008)
Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material.Nature nanotechnology, 3 5
Y. Pan, N. Jiang, J. Sun, D. Shi, S. Du, Fen Liu, H. Gao (2007)
Millimeter-Scale, Highly Ordered Single Crystalline Graphene Grown on Ru (0001) SurfacearXiv: Materials Science
R. Zacharia, H. Ulbricht, T. Hertel (2003)
Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbonsPhysical Review B, 69
SY Zhou (2008)
Origin of the energy bandgap in epitaxial graphene—ReplyNature Mater., 7
Fully exploiting the properties of graphene will require a method for the mass production of this remarkable material. Two main routes are possible: large-scale growth or large-scale exfoliation. Here, we demonstrate graphene dispersions with concentrations up to ∼0.01 mg ml−1, produced by dispersion and exfoliation of graphite in organic solvents such as N-methyl-pyrrolidone. This is possible because the energy required to exfoliate graphene is balanced by the solvent–graphene interaction for solvents whose surface energies match that of graphene. We confirm the presence of individual graphene sheets by Raman spectroscopy, transmission electron microscopy and electron diffraction. Our method results in a monolayer yield of ∼1 wt%, which could potentially be improved to 7–12 wt% with further processing. The absence of defects or oxides is confirmed by X-ray photoelectron, infrared and Raman spectroscopies. We are able to produce semi-transparent conducting films and conducting composites. Solution processing of graphene opens up a range of potential large-area applications, from device and sensor fabrication to liquid-phase chemistry.
Nature Nanotechnology – Springer Journals
Published: Aug 10, 2008
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.