Access the full text.
Sign up today, get DeepDyve free for 14 days.
Yonghyun Cho, Sanghan Lee, Yong-Seok Lee, T. Hong, Jaephil Cho (2011)
Spinel‐Layered Core‐Shell Cathode Materials for Li‐Ion BatteriesAdvanced Energy Materials, 1
(1813)
Energy Environ
I. Belharouak, Gary Koenig, Jiwei Ma, Dapeng Wang, K. Amine (2011)
Identification of LiNi0.5Mn1.5O4 spinel in layered manganese enriched electrode materialsElectrochemistry Communications, 13
Sun‐Ho Kang, M. Thackeray (2009)
Enhancing the rate capability of high capacity xLi2MnO3 · (1 -x)LiMO2 (M = Mn, Ni, Co) electrodes by Li-Ni-PO4 treatmentElectrochemistry Communications, 11
Dongwon Shin, C. Wolverton, J. Croy, M. Balasubramanian, Sun‐Ho Kang, C. Rivera, M. Thackeray (2011)
First-Principles Calculations, Electrochemical and X-ray Absorption Studies of Li-Ni-PO4 Surface-Treated xLi2MnO3·(1−x)LiMO2 (M = Mn, Ni, Co) Electrodes for Li-Ion BatteriesJournal of The Electrochemical Society, 159
Dapeng Wang, I. Belharouak, Guangwen Zhou, K. Amine (2013)
Nanoarchitecture Multi‐Structural Cathode Materials for High Capacity Lithium BatteriesAdvanced Functional Materials, 23
Iroon Polytechniou (2006)
Influence of cultivation temperature on the ligninolytic activity of selected fungal strains
M. Armand, J. Tarascon (2008)
Building better batteriesNature, 451
Liang Zhou, Dongyuan Zhao, X. Lou (2012)
LiNi(0.5)Mn(1.5)O4 hollow structures as high-performance cathodes for lithium-ion batteries.Angewandte Chemie, 51 1
Haeshin Lee, Shara Dellatore, W. Miller, P. Messersmith (2007)
Mussel-Inspired Surface Chemistry for Multifunctional CoatingsScience, 318
M. Thackeray, C. Wolverton, Eric Isaacs (2012)
Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteriesEnergy and Environmental Science, 5
Jianming Zheng, M. Gu, A. Genç, Jie Xiao, P. Xu, Xilin Chen, Zihua Zhu, Wenbo Zhao, L. Pullan, Chongmin Wang, Ji‐Guang Zhang (2014)
Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution.Nano letters, 14 5
A. Kraytsberg, Y. Ein‐Eli (2012)
Higher, Stronger, Better…︁ A Review of 5 Volt Cathode Materials for Advanced Lithium‐Ion BatteriesAdvanced Energy Materials, 2
Qiongyu Wang, Jun Liu, A. Murugan, A. Manthiram (2009)
High capacity double-layer surface modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode with improved rate capabilityJournal of Materials Chemistry, 19
B. Dunn, H. Kamath, J. Tarascon (2011)
Electrical Energy Storage for the Grid: A Battery of ChoicesScience, 334
Y. Wu, A. Manthiram (2009)
Effect of surface modifications on the layered solid solution cathodes (1 − z) Li[Li1/3Mn2/3]O2 − (z) Li[Mn0.5 − yNi0.5 − yCo2y]O2Solid State Ionics, 180
N. Choi, Zonghai Chen, S. Freunberger, Xiulei Ji, Yang‐Kook Sun, K. Amine, G. Yushin, L. Nazar, Jaephil Cho, P. Bruce (2012)
Challenges facing lithium batteries and electrical double-layer capacitors.Angewandte Chemie, 51 40
M. Gu, I. Belharouak, Jianming Zheng, Huimin Wu, Jie Xiao, A. Genç, K. Amine, S. Thevuthasan, D. Baer, Ji‐Guang Zhang, N. Browning, Jun Liu, Chongmin Wang (2012)
Formation of the spinel phase in the layered composite cathode used in Li-ion batteries.ACS nano, 7 1
W. Marsden (2012)
I and J
Feng Wu, Ning Li, Yuefeng Su, Haofang Shou, Li-ying Bao, Wen Yang, Linjing Zhang, R. An, Shi Chen (2013)
Spinel/Layered Heterostructured Cathode Material for High‐Capacity and High‐Rate Li‐Ion BatteriesAdvanced Materials, 25
M. Thackeray, S. Kang, Christopher Johnson, J. Vaughey, R. Benedek, S. Hackney (2007)
Li{sub2}MnO{sub3}-stabilized LiMO{sub2} (M=Mn, Ni, Co) electrodes for high energy lithium-ion batteriesJournal of Materials Chemistry, 17
A. Manthiram, Katharine Chemelewski, E. Lee (2014)
A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteriesEnergy and Environmental Science, 7
Q. Fu, Fei Du, Xiao-fei Bian, Yuhui Wang, Xiao Yan, Yongquan Zhang, K. Zhu, Gang Chen, Chunzhong Wang, Yingjin Wei (2014)
Electrochemical performance and thermal stability of Li1.18Co0.15Ni0.15Mn0.52O2 surface coated with the ionic conductor Li3VO4Journal of Materials Chemistry, 2
A. Abouimrane, O. Compton, H. Deng, I. Belharouak, D. Dikin, S. Nguyen, K. Amine (2011)
Improved rate capability in a high-capacity layered cathode material via thermal reductionElectrochemical and Solid State Letters, 14
Feng Wu, Ning Li, Yuefeng Su, Huaquan Lu, Linjing Zhang, R. An, Zhao Wang, Li-ying Bao, Shi Chen (2012)
Can surface modification be more effective to enhance the electrochemical performance of lithium rich materialsJournal of Materials Chemistry, 22
Shaohua Guo, Haijun Yu, Pan Liu, Xizheng Liu, De Li, Mingwei Chen, M. Ishida, Haoshen Zhou (2014)
Surface coating of lithium–manganese-rich layered oxides with delaminated MnO2 nanosheets as cathode materials for Li-ion batteriesJournal of Materials Chemistry, 2
Min‐Sik Park, Jong‐Won Lee, W. Choi, D. Im, S. Doo, Kyusung Park (2010)
On the surface modifications of high-voltage oxide cathodes for lithium-ion batteries: new insight and significant safety improvementJournal of Materials Chemistry, 20
Yu‐Guo Guo, Jinsong Hu, L. Wan (2008)
Nanostructured Materials for Electrochemical Energy Conversion and Storage DevicesAdvanced Materials, 20
Yang‐Kook Sun, Seung‐Taek Myung, Byung-Chun Park, Seung Woo (2006)
Synthesis and Characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the Microscale Core-Shell Structure as the Positive Electrode Material for Lithium Batteries
M. Thackeray, Christopher Johnson, J. Vaughey, Naichao Li, S. Hackney (2005)
Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteriesJournal of Materials Chemistry, 15
Donghan Kim, G. Sandí, J. Croy, K. Gallagher, Sun‐Ho Kang, Eungje Lee, Michael Slater, Christopher Johnson, M. Thackeray (2013)
Composite ‘Layered-Layered-Spinel’ Cathode Structures for Lithium-Ion BatteriesJournal of The Electrochemical Society, 160
Hao Jiang, Liping Yang, Chunzhong Li, Chaoyi Yan, Pooi Lee, Jan Ma (2011)
High–rate electrochemical capacitors from highly graphitic carbon–tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowiresEnergy and Environmental Science, 4
Xiaofeng Zhang, I. Belharouak, Li Li, Y. Lei, J. Elam, A. Nie, Xinqi Chen, R. Yassar, R. Axelbaum (2013)
Structural and Electrochemical Study of Al2O3 and TiO2 Coated Li1.2Ni0.13Mn0.54Co0.13O2 Cathode Material Using ALDAdvanced Energy Materials, 3
Xiangbo Meng, Xiao‐Qing Yang, X. Sun (2012)
Emerging Applications of Atomic Layer Deposition for Lithium‐Ion Battery StudiesAdvanced Materials, 24
S. Hy, Felix Felix, J. Rick, Wei‐Nien Su, B. Hwang (2014)
Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[Ni(x)Li((1-2x)/3)Mn((2-x)/3)]O2 (0 ≤ x ≤ 0.5).Journal of the American Chemical Society, 136 3
Yang‐Kook Sun, Min‐Joon Lee, C. Yoon, J. Hassoun, K. Amine, B. Scrosati (2012)
The Role of AlF3 Coatings in Improving Electrochemical Cycling of Li‐Enriched Nickel‐Manganese Oxide Electrodes for Li‐Ion BatteriesAdvanced Materials, 24
Huijie Yu, C. Ling, J. Bhattacharya, John Thomas, K. Thornton, Anton Ven (2014)
Designing the next generation high capacity battery electrodesEnergy and Environmental Science, 7
C. Yuan, H. Wu, Yi Xie, X. Lou (2014)
Mixed transition-metal oxides: design, synthesis, and energy-related applications.Angewandte Chemie, 53 6
N. Yabuuchi, K. Yoshii, Seung‐Taek Myung, I. Nakai, S. Komaba (2011)
Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2.Journal of the American Chemical Society, 133 12
Haijun Yu, Haoshen Zhou (2013)
High-Energy Cathode Materials (Li2MnO3-LiMO2) for Lithium-Ion Batteries.The journal of physical chemistry letters, 4 8
Dong Luo, Guangshe Li, Chaochao Fu, Jing Zheng, Jianming Fan, Qi Li, Liping Li (2014)
A New Spinel‐Layered Li‐Rich Microsphere as a High‐Rate Cathode Material for Li‐Ion BatteriesAdvanced Energy Materials, 4
(2012)
Angew
A. Postma, Yan Yan, Yajun Wang, A. Zelikin, Elvira Tjipto, F. Caruso (2009)
Self-Polymerization of Dopamine as a Versatile and Robust Technique to Prepare Polymer CapsulesChemistry of Materials, 21
Rui Liu, S. Mahurin, Chen Li, R. Unocic, J. Idrobo, Hongjun Gao, S. Pennycook, S. Dai (2011)
Dopamine as a carbon source: the controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites.Angewandte Chemie, 50 30
A. Armstrong, M. Holzapfel, P. Novák, C. Johnson, Sun‐Ho Kang, M. Thackeray, P. Bruce (2006)
Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2.Journal of the American Chemical Society, 128 26
A novel Layered@Spinel@Carbon heterostructure is successfully fabricated via an in situ synchronous carbonization-reduction process based on a bio-inspired coating method, which comprises a core of Li-rich layered (R3̄m) oxide, a spinel phase (Fd3̄m) interlayer and a carbon nano-coating. This unique structure, which combines the advantages of the high capacity Li-rich layered structure, 3D fast Li+ diffusion channels of the spinel structure and the high conductivity of the carbon coating, shows extremely high discharge capacity (as high as 334.5 mA h g−1) and superior rate capability. This strategy may provide some new insights into the design and synthesis of various electrode materials for high performance energy storage devices.
Journal of Materials Chemistry A – Royal Society of Chemistry
Published: Feb 3, 2015
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.