Access the full text.
Sign up today, get DeepDyve free for 14 days.
I. Castelli, T. Olsen, S. Datta, D. Landis, S. Dahl, K. Thygesen, K. Jacobsen (2012)
Computational screening of perovskite metal oxides for optimal solar light captureEnergy and Environmental Science, 5
K. Butler, J. Frost, A. Walsh (2015)
Band alignment of the hybrid halide perovskites CH3NH3PbCl3, CH3NH3PbBr3 and CH3NH3PbI3Materials horizons, 2
E. Mosconi, A. Amat, Md. Nazeeruddin, M. Grätzel, F. Angelis (2013)
First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic ApplicationsJournal of Physical Chemistry C, 117
P. Umari, E. Mosconi, F. Angelis (2014)
Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 Perovskites for Solar Cell ApplicationsScientific Reports, 4
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka (2009)
Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.Journal of the American Chemical Society, 131 17
T. Etienne, E. Mosconi, F. Angelis (2016)
Dynamical Origin of the Rashba Effect in Organohalide Lead Perovskites: A Key to Suppressed Carrier Recombination in Perovskite Solar Cells?The journal of physical chemistry letters, 7 9
F. Brivio, K. Butler, A. Walsh, M. Schilfgaarde (2014)
Electronic structure of hybrid halide perovskite photovoltaic absorbersBulletin of the American Physical Society
Ye Yang, Mengjin Yang, Zhen Li, Ryan Crisp, K. Zhu, M. Beard (2015)
Comparison of Recombination Dynamics in CH3NH3PbBr3 and CH3NH3PbI3 Perovskite Films: Influence of Exciton Binding Energy.The journal of physical chemistry letters, 6 23
H. Lv, Hongwei Gao, Yue Yang, Lekun Liu (2011)
Density functional theory (DFT) investigation on the structure and electronic properties of the cubic perovskite PbTiO3Applied Catalysis A-general, 404
E. Mosconi, P. Umari, F. Angelis (2015)
Electronic and optical properties of mixed Sn–Pb organohalide perovskites: a first principles investigationJournal of Materials Chemistry, 3
A. Amat, E. Mosconi, Enrico Ronca, C. Quarti, P. Umari, Md. Nazeeruddin, M. Grätzel, F. Angelis (2014)
Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting.Nano letters, 14 6
Ken'ichiro Tanaka, Takayuki Takahashi, T. Ban, T. Kondo, K. Uchida, N. Miura (2003)
Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3Solid State Communications, 127
D. Zhong, Bing Cai, Xiuli Wang, Zhou Yang, Y. Xing, S. Miao, Wen-Hau Zhang, Can Li (2015)
Synthesis of oriented TiO2 nanocones with fast charge transfer for perovskite solar cellsNano Energy, 11
Jing Feng, B. Xiao (2014)
Crystal Structures, Optical Properties, and Effective Mass Tensors of CH3NH3PbX3 (X = I and Br) Phases Predicted from HSE06.The journal of physical chemistry letters, 5 7
T. Baikie, N. Barrow, Yanan Fang, P. Keenan, P. Slater, R. Piltz, M. Gutmann, S. Mhaisalkar, T. White (2015)
A combined single crystal neutron/X-ray diffraction and solid-state nuclear magnetic resonance study of the hybrid perovskites CH3NH3PbX3 (X = I, Br and Cl)Journal of Materials Chemistry, 3
I. Borriello, G. Cantele, D. Ninno (2008)
Ab initio investigation of hybrid organic-inorganic perovskites based on tin halidesPhysical Review B, 77
F. Chiarella, A. Zappettini, F. Licci, I. Borriello, G. Cantele, D. Ninno, A. Cassinese, R. Vaglio (2008)
Combined experimental and theoretical investigation of optical, structural and electronic properties of CH3NH3SnX3 thin films (X=Cl,Br)Physical Review B, 77
J. Im, Chang-Ryul Lee, Jin‐Wook Lee, Sang-Won Park, N. Park (2011)
6.5% efficient perovskite quantum-dot-sensitized solar cell.Nanoscale, 3 10
P. Umari, G. Stenuit, S. Baroni (2009)
GW quasiparticle spectra from occupied states onlyPhysical Review B, 81
G. Onida, L. Reining, Á. Rubio (2002)
Electronic excitations: density-functional versus many-body Green's-function approachesReviews of Modern Physics, 74
Hui‐Seon Kim, Chang-Ryul Lee, J. Im, Ki-Beom Lee, T. Moehl, Arianna Marchioro, S. Moon, R. Humphry‐Baker, Jun‐Ho Yum, J. Moser, M. Grätzel, N. Park (2012)
Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%Scientific Reports, 2
Mingzhen Liu, M. Johnston, H. Snaith (2013)
Efficient planar heterojunction perovskite solar cells by vapour depositionNature, 501
D. Vanderbilt (1990)
Soft self-consistent pseudopotentials in a generalized eigenvalue formalism.Physical review. B, Condensed matter, 41 11
Y. Ping, D. Rocca, G. Galli (2013)
Electronic excitations in light absorbers for photoelectrochemical energy conversion: first principles calculations based on many body perturbation theory.Chemical Society reviews, 42 6
L. Etgar, P. Gao, Z. Xue, Qin Peng, A. Chandiran, B. Liu, Md. Nazeeruddin, M. Grätzel (2012)
Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells.Journal of the American Chemical Society, 134 42
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. Chiarotti, M. Cococcioni, I. Dabo, A. Corso, Stefano Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, Alfredo Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. Seitsonen, A. Smogunov, P. Umari, R. Wentzcovitch (2009)
QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materialsJournal of Physics: Condensed Matter, 21
G. Papavassiliou, I. Koutselas (1995)
Structural, optical and related properties of some natural three- and lower-dimensional semiconductor systemsSynthetic Metals, 71
M. Saba, F. Quochi, A. Mura, G. Bongiovanni (2016)
Excited State Properties of Hybrid Perovskites.Accounts of chemical research, 49 1
N. Kitazawa, Y. Watanabe, Y. Nakamura (2002)
Optical properties of CH3NH3PbX3 (X = halogen) and their mixed-halide crystalsJournal of Materials Science, 37
Seungchan Ryu, J. Noh, N. Jeon, Young Kim, Woon Yang, Jangwon Seo, S. Seok (2014)
Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factorEnergy and Environmental Science, 7
Michael Lee, J. Teuscher, T. Miyasaka, T. Murakami, H. Snaith (2012)
Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide PerovskitesScience, 338
J. Noh, S. Im, J. Heo, T. Mandal, S. Seok (2013)
Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells.Nano letters, 13 4
H. Monkhorst, J. Pack (1976)
SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONSPhysical Review B, 13
C. Quarti, E. Mosconi, J. Ball, V. D'innocenzo, Chen Tao, S. Pathak, H. Snaith, A. Petrozza, F. Angelis (2016)
Structural and optical properties of methylammonium lead iodide across the tetragonal to cubic phase transition: implications for perovskite solar cellsEnergy and Environmental Science, 9
M. Rohlfing, S. Louie (2000)
Electron-hole excitations and optical spectra from first principlesPhysical Review B, 62
J. Perdew, K. Burke, M. Ernzerhof (1996)
Generalized Gradient Approximation Made Simple.Physical review letters, 77 18
Giacomo Maculan, A. Sheikh, A. Abdelhady, M. Saidaminov, Azimul Haque, Murali Banavoth, E. Alarousu, O. Mohammed, Tom Wu, O. Bakr (2015)
Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector
A. Poglitsch, D. Weber (1987)
Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter‐wave spectroscopyJournal of Chemical Physics, 87
M. Rieger, M. Rieger, L. Steinbeck, I. White, H. Rojas, R. Godby (1998)
The GW space-time method for the self-energy of large systemsComputer Physics Communications, 117
Materials engineering is a key for the enhancement of photovoltaics technology. This is particularly true for the novel class of perovskite solar cells. Accurate theoretical modelling can help establish general trends of behavior when addressing structural changes. Here, we consider the effects due to halide substitution in organohalide CH3NH3PbX3 perovskites exploring the halide series with X = Cl, Br, I. For this task, we use accurate DFT and GW methods including spin–orbit coupling. We find the expected band gap increase when moving from X = I to Cl, in line with the experimental data. Most notably, the calculated absorption coefficients for I, Br and Cl are nicely reproducing the behavior reported experimentally. A common feature of all the simulated band structures is a significant Rashba effect. This is similar for MAPbI3 and MAPbBr3 while MAPbCl3 shows in general a reduced Rashba interaction coefficient. Finally, a monotonic increase of the exciton reduced masses is calculated when moving from I to Br to Cl, in line with the stronger excitonic character of the lighter perovskite halides.
Physical Chemistry Chemical Physics – Royal Society of Chemistry
Published: Oct 5, 2016
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.