Access the full text.
Sign up today, get DeepDyve free for 14 days.
Pablo Salazar, S. Stephens, A. Kazim, J. Pringle, B. Cola (2014)
Enhanced thermo-electrochemical power using carbon nanotube additives in ionic liquid redox electrolytesJournal of Materials Chemistry, 2
M. Romano, J. Razal, Dennis Antiohos, G. Wallace, Jun Chen (2015)
Nano-Carbon Electrodes for Thermal Energy Harvesting.Journal of nanoscience and nanotechnology, 15 1
Hui Wang, Dan Zhao, Zia Khan, S. Puzinas, M. Jonsson, M. Berggren, X. Crispin (2017)
Ionic Thermoelectric Figure of Merit for Charging of SupercapacitorsAdvanced Electronic Materials, 3
Gang Wang, R. Cao, Yongzhi Wang, Guofeng Qian, Han Dan, Wei Jiang, Lingao Ju, Min Wu, Yu Xiao, Xinghuan Wang (2016)
Simvastatin induces cell cycle arrest and inhibits proliferation of bladder cancer cells via PPARγ signalling pathwayScientific Reports, 6
Dr Rooij (2003)
Electrochemical Methods: Fundamentals and ApplicationsAnti-corrosion Methods and Materials, 50
S. Uhl, M. Pellet, J. Tschanz, E. Laux, Tony Journot, L. Jeandupeux, H. Keppner (2015)
Fabrication of Highly-integrated Thermoelectric Generators Based on Ionic LiquidsMaterials Today: Proceedings, 2
Andrey Gunawan, Hechao Li, Chaoyu Lin, D. Buttry, V. Mujica, R. Taylor, R. Prasher, P. Phelan (2014)
The amplifying effect of natural convection on power generation of thermogalvanic cellsInternational Journal of Heat and Mass Transfer, 78
A. Kazim, B. Cola (2016)
Electrochemical Characterization of Carbon Nanotube and Poly (3,4-ethylenedioxythiophene)−Poly(styrenesulfonate) Composite Aqueous Electrolyte for Thermo-Electrochemical CellsJournal of The Electrochemical Society, 163
E. Laux, S. Uhl, Tony Journot, J. Brossard, L. Jeandupeux, H. Keppner (2016)
Aspects of Protonic Ionic Liquid as Electrolyte in Thermoelectric GeneratorsJournal of Electronic Materials, 45
C. Vining (2009)
An inconvenient truth about thermoelectrics.Nature materials, 8 2
Pablo Salazar, Satish Kumar, B. Cola (2014)
Design and optimization of thermo-electrochemical cellsJournal of Applied Electrochemistry, 44
V. Cappello, L. Marchetti, P. Parlanti, S. Landi, I. Tonazzini, M. Cecchini, V. Piazza, M. Gemmi (2016)
Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe DiseaseScientific Reports, 6
V. Zinovyeva, S. Nakamae, M. Bonetti, M. Roger (2014)
Enhanced Thermoelectric Power in Ionic Liquids, 1
Hyeongwook Im, H. Moon, Jeong Lee, In-Young Chung, T. Kang, Y. Kim (2014)
Flexible thermocells for utilization of body heatNano Research, 7
Theodore Abraham, D. Macfarlane, R. Baughman, Liyu Jin, Na Li, J. Pringle (2013)
Towards ionic liquid-based thermoelectrochemical cells for the harvesting of thermal energyElectrochimica Acta, 113
Y. Yamato, Y. Katayama, T. Miura (2013)
Effects of the Interaction between Ionic Liquids and Redox Couples on Their Reaction EntropiesJournal of The Electrochemical Society, 160
Theodore Abraham, D. Macfarlane, J. Pringle (2011)
Seebeck coefficients in ionic liquids--prospects for thermo-electrochemical cells.Chemical communications, 47 22
A. Sosnowska, Maciej Barycki, A. Gajewicz, M. Bobrowski, Sylwia Freza, P. Skurski, S. Uhl, E. Laux, Tony Journot, L. Jeandupeux, H. Keppner, T. Puzyn (2016)
Towards the Application of Structure-Property Relationship Modeling in Materials Science: Predicting the Seebeck Coefficient for Ionic Liquid/Redox Couple Systems.Chemphyschem : a European journal of chemical physics and physical chemistry, 17 11
Kazuki Yoshida, Megumi Nakamura, Yuichi Kazue, Naoki Tachikawa, S. Tsuzuki, S. Seki, Kaoru Dokko, M. Watanabe (2011)
Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes.Journal of the American Chemical Society, 133 33
Sang-Youn Park, S. Do, K. Choi, J. Kang, D. Jang, B. Schmidt, M. Brando, B.-H. Kim, D. Kim, N. Butch, Seongsu Lee, J. Park, S. Ji (2016)
Spin–orbit coupled molecular quantum magnetism realized in inorganic solidNature Communications, 7
S. Sahami, M. Weaver (1981)
Entropic and enthalpic contributions to the solvent dependence of the thermodynamics of transition-metal redox couples: Part II. Couples containing ammine and ethylenediamine ligandsJournal of Electroanalytical Chemistry, 122
Theodore Abraham, Naoki Tachikawa, D. Macfarlane, J. Pringle (2014)
Investigation of the kinetic and mass transport limitations in thermoelectrochemical cells with different electrode materials.Physical chemistry chemical physics : PCCP, 16 6
B. Burrows (1976)
Discharge Behavior of Redox Thermogalvanic CellsJournal of The Electrochemical Society, 123
Nathan Yutronkie, Irina Kühne, I. Korobkov, Jaclyn Brusso, M. Murugesu (2016)
Connecting mononuclear dysprosium single-molecule magnets to form dinuclear complexes via in situ ligand oxidation.Chemical communications, 52 4
Tae Kim, Jeong Lee, Geonhui Lee, H. Yoon, Jeyong Yoon, T. Kang, Y. Kim (2017)
High thermopower of ferri/ferrocyanide redox couple in organic-water solutionsNano Energy, 31
M. Lazar, Danah Al-Masri, D. Macfarlane, J. Pringle (2016)
Enhanced thermal energy harvesting performance of a cobalt redox couple in ionic liquid-solvent mixtures.Physical chemistry chemical physics : PCCP, 18 3
H. Yang, L. Tufa, Kyoung Bae, T. Kang (2015)
A tubing shaped, flexible thermal energy harvester based on a carbon nanotube sheet electrodeCarbon, 86
D. Cabral, P. Howlett, J. Pringle, Xinyi Zhang, D. Macfarlane (2015)
Electrochemistry of tris(2,2′-bipyridyl) cobalt(II) in ionic liquids and aprotic molecular solvents on glassy carbon and platinum electrodesElectrochimica Acta, 180
Jeffrey Black, Thomas Murphy, R. Atkin, Andrew Dolan, L. Aldous (2016)
The thermoelectrochemistry of lithium-glyme solvate ionic liquids: towards waste heat harvesting.Physical chemistry chemical physics : PCCP, 18 30
S. Seki, K. Takei, H. Miyashiro, M. Watanabe (2011)
Physicochemical and Electrochemical Properties of Glyme-LiN(SO2F)2 Complex for Safe Lithium-ion Secondary Battery ElectrolyteJournal of The Electrochemical Society, 158
D. Cabral, P. Howlett, D. Macfarlane (2016)
Electrochemistry of the tris(2,2‘-bipyridine) complex of iron(II) in ionic liquids and aprotic molecular solventsElectrochimica Acta, 220
D. Macfarlane, M. Forsyth, P. Howlett, M. Kar, S. Passerini, J. Pringle, H. Ohno, M. Watanabe, Feng Yan, Wenjun Zheng, Shiguo Zhang, Jie Zhang (2016)
Ionic liquids and their solid-state analogues as materials for energy generation and storageNature Reviews Materials, 1
Kyoung Bae, H. Yang, L. Tufa, T. Kang (2014)
Thermobattery based on CNT coated carbon textile and thermoelectric electrolyteInternational Journal of Precision Engineering and Manufacturing, 16
Renchong Hu, B. Cola, N. Haram, J. Barisci, Sergey Lee, S. Stoughton, G. Wallace, C. Too, Michael Thomas, Adrian Gestos, M. Cruz, J. Ferraris, A. Zakhidov, R. Baughman (2010)
Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell.Nano letters, 10 3
M. Mannheimer, D. Speers (1969)
Solid electrolyte galvanic cellJournal of The Electrochemical Society, 116
Na Jiao, Theodore Abraham, D. Macfarlane, J. Pringle (2014)
Ionic liquid electrolytes for thermal energy harvesting using a cobalt redox coupleJournal of The Electrochemical Society, 161
Theodore Abraham, D. Macfarlane, J. Pringle (2013)
High Seebeck coefficient redox ionic liquid electrolytes for thermal energy harvestingEnergy and Environmental Science, 6
M. Romano, Na Li, Dennis Antiohos, J. Razal, A. Nattestad, S. Beirne, S. Fang, Yongsheng Chen, R. Jalili, G. Wallace, R. Baughman, Jun Chen (2013)
Carbon Nanotube – Reduced Graphene Oxide Composites for Thermal Energy Harvesting ApplicationsAdvanced Materials, 25
A. Siddique, S. Mahmud, B. Heyst (2017)
A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challengesRenewable & Sustainable Energy Reviews, 73
Jimmy Wu, Jeffrey Black, L. Aldous (2017)
Thermoelectrochemistry using conventional and novel gelled electrolytes in heat-to-current thermocellsElectrochimica Acta, 225
D. Macfarlane, Naoki Tachikawa, M. Forsyth, J. Pringle, P. Howlett, G. Elliott, James Davis, M. Watanabe, P. Simon, C. Angell (2014)
Energy applications of ionic liquidsEnergy and Environmental Science, 7
J. Nugent, K. Santhanam, and Rubio, P. Ajayan (2001)
Fast Electron Transfer Kinetics on Multiwalled Carbon Nanotube Microbundle ElectrodesNano Letters, 1
F. Disalvo (1999)
Thermoelectric cooling and power generationScience, 285 5428
Jiangjing He, Danah Al-Masri, D. Macfarlane, J. Pringle (2016)
Temperature dependence of the electrode potential of a cobalt-based redox couple in ionic liquid electrolytes for thermal energy harvesting.Faraday discussions, 190
K. Ueno, Kazuki Yoshida, M. Tsuchiya, Naoki Tachikawa, Kaoru Dokko, M. Watanabe (2012)
Glyme-lithium salt equimolar molten mixtures: concentrated solutions or solvate ionic liquids?The journal of physical chemistry. B, 116 36
T. Harman, Michael Walsh, B. laforge, George Turner (2005)
Nanostructured thermoelectric materialsJournal of Electronic Materials, 34
A. deBethune, T. Licht, N. Swendeman (1959)
The Temperature Coefficients of Electrode Potentials The Isothermal and Thermal Coefficients—The Standard Ionic Entropy of Electrochemical Transport of the Hydrogen IonJournal of The Electrochemical Society, 106
Andrey Gunawan, Chaoyu Lin, D. Buttry, V. Mujica, R. Taylor, R. Prasher, P. Phelan (2013)
Liquid Thermoelectrics: Review of Recent And Limited New Data of Thermogalvanic Cell ExperimentsNanoscale and Microscale Thermophysical Engineering, 17
M. Bonetti, S. Nakamae, Michel Roger, Patrick Guenoun (2011)
Huge Seebeck coefficients in nonaqueous electrolytes.The Journal of chemical physics, 134 11
J. Hupp, M. Weaver (1984)
Solvent, Ligand, and Ionic Charge Effects on Reaction Entropies for Simple Transition-Metal Redox Couples.Inorganic Chemistry, 23
T. Quickenden, Y. Mua (1995)
A Review of Power Generation in Aqueous Thermogalvanic CellsJournal of The Electrochemical Society, 142
Pablo Salazar, Satish Kumar, B. Cola (2012)
Nitrogen- and Boron-Doped Carbon Nanotube Electrodes in a Thermo-Electrochemical CellJournal of The Electrochemical Society, 159
Long Zhang, Taewoo Kim, Na Li, T. Kang, Jun Chen, J. Pringle, Mei Zhang, A. Kazim, S. Fang, Carter Haines, Danah Al-Masri, B. Cola, J. Razal, J. Di, S. Beirne, D. Macfarlane, A. González-Martín, S. Mathew, Yong Kim, G. Wallace, R. Baughman (2017)
High Power Density Electrochemical Thermocells for Inexpensively Harvesting Low‐Grade Thermal EnergyAdvanced Materials, 29
T. Quickenden, Y. Mua (1995)
The Power Conversion Efficiencies of a Thermogalvanic Cell Operated in Three Different OrientationsJournal of The Electrochemical Society, 142
Hongyao Zhou, Teppei Yamada, N. Kimizuka (2016)
Supramolecular Thermo-Electrochemical Cells: Enhanced Thermoelectric Performance by Host-Guest Complexation and Salt-Induced Crystallization.Journal of the American Chemical Society, 138 33
Longhua Tang, Ying Wang, Yueming Li, Hongbin Feng, Jin Lu, Jinghong Li (2009)
Preparation, Structure, and Electrochemical Properties of Reduced Graphene Sheet FilmsAdvanced Functional Materials, 19
T. Migita, Naoki Tachikawa, Y. Katayama, T. Miura (2009)
Thermoelectromotive Force of Some Redox Couples in an Amide-type Room-temperature Ionic LiquidElectrochemistry, 77
G. Snyder, E. Toberer (2008)
Complex thermoelectric materials.Nature materials, 7 2
T. Kang, S. Fang, M. Kozlov, Carter Haines, Na Li, Yong Kim, Yongsheng Chen, R. Baughman (2012)
Electrical Power From Nanotube and Graphene Electrochemical Thermal Energy HarvestersAdvanced Functional Materials, 22
Liyu Jin, George Greene, D. Macfarlane, J. Pringle (2016)
Redox-Active Quasi-Solid-State Electrolytes for Thermal Energy HarvestingACS energy letters, 1
J. Agar, W. Breck (1957)
Thermal diffusion in non-isothermal cells. Part 1.—Theoretical relations and experiments on solutions of thallous saltsTransactions of The Faraday Society, 53
Pablo Salazar, Kevin Chan, S. Stephens, Baratunde Colaa (2014)
Supplemental Information for : Enhanced Electrical Conductivity of Imidazolium-based Ionic Liquids Mixed with Carbon Nanotubes : A Spectroscopic Study
M. Bonetti, S. Nakamae, B. Huang, T. Salez, C. Wiertel-Gasquet, M. Roger (2015)
Thermoelectric energy recovery at ionic-liquid/electrode interface.The Journal of chemical physics, 142 24
Thermo-electrochemical cells (also called thermocells) are promising devices for harvesting waste heat for the sustainable production of energy. Research into thermocells has increased significantly in recent years, driven by advantages such as their ability to continuously convert heat into electrical energy without producing emissions or consuming materials. Until relatively recently, the commercial viability of thermocells was limited by their low power output and conversion efficiency. However, there have lately been significant advances in thermocell performance as a result of improvements to the electrode materials, electrolyte and redox chemistry and various features of the cell design. This article overviews these recent developments in thermocell research, including the development of new redox couples, the optimisation of electrolytes for improved power output and high-temperature operation, the design of high surface area electrodes for increased current density and device flexibility, and the optimisation of cell design to further enhance performance.
Chemical Communications – Royal Society of Chemistry
Published: Jun 8, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.