Access the full text.
Sign up today, get DeepDyve free for 14 days.
J. Gallivan, J. Gallivan, D. Mclean, J. Flanagan, J. Culham, J. Culham (2013)
Where One Hand Meets the Other: Limb-Specific and Action-Dependent Movement Plans Decoded from Preparatory Signals in Single Human Frontoparietal Brain AreasThe Journal of Neuroscience, 33
R. Goebel, F. Esposito, E. Formisano (2006)
Analysis of functional image analysis contest (FIAC) data with brainvoyager QX: From single‐subject to cortically aligned group general linear model analysis and self‐organizing group independent component analysisHuman Brain Mapping, 27
A. Mckyton, E. Zohary (2007)
Beyond retinotopic mapping: the spatial representation of objects in the human lateral occipital complex.Cerebral cortex, 17 5
L. Hinkley, Leah Krubitzer, Jeff Padberg, Elizabeth Disbrow, Hinkley Lbn, Krubitzer La, Padberg J, Disbrow Visual (2007)
Neurophysiology of prehension. III. Representation of object features in posterior parietal cortex of the macaque monkey.Journal of neurophysiology, 98 6
C. Begliomini, M. Wall, Andrew Smith, U. Castiello (2007)
Differential cortical activity for precision and whole‐hand visually guided grasping in humansEuropean Journal of Neuroscience, 25
J. Gallivan, D. Mclean, Kenneth Valyear, J. Culham (2013)
Decoding the neural mechanisms of human tool useeLife, 2
C. Galletti, P. Fattori, M. Gamberini, D. Kutz (1999)
The cortical visual area V6: brain location and visual topographyEuropean Journal of Neuroscience, 11
Z. Kourtzi, N. Kanwisher (2001)
Representation of Perceived Object Shape by the Human Lateral Occipital ComplexScience, 293
C. Cavina-Pratesi, M. Goodale, J. Culham (2007)
FMRI Reveals a Dissociation between Grasping and Perceiving the Size of Real 3D ObjectsPLoS ONE, 2
J. Smeets, E. Brenner (1999)
A new view on grasping.Motor control, 3 3
Gallivan (2009)
Is that within reach? fMRI reveals that the human superior parieto-occipital cortex encodes objects reachable by the handJ. Neurosci., 29
K. Grill-Spector, T. Kushnir, S. Edelman, Galia Avidan, Y. Itzchak, R. Malach (1999)
Differential Processing of Objects under Various Viewing Conditions in the Human Lateral Occipital ComplexNeuron, 24
Grzegorz Kroliczak, Teresa McAdam, D. Quinlan, J. Culham (2008)
The human dorsal stream adapts to real actions and 3D shape processing: a functional magnetic resonance imaging study.Journal of neurophysiology, 100 5
Cavina-Pratesi (2010b)
Functional magnetic resonance imaging reveals the neural substrates of arm transport and grip formation in reach-to-grasp actions in humansJ. Neurosci., 30
S. Forman, J. Cohen, Mark Fitzgerald, W. Eddy, M. Mintun, D. Noll (1995)
Improved Assessment of Significant Activation in Functional Magnetic Resonance Imaging (fMRI): Use of a Cluster‐Size ThresholdMagnetic Resonance in Medicine, 33
J. Gallivan, Adam Mclean, J. Culham (2011)
Neuroimaging reveals enhanced activation in a reach-selective brain area for objects located within participants’ typical hand workspacesNeuropsychologia, 49
F. Binkofski, C. Dohle, S. Posse, K. Stephan, H. Hefter, R. Seitz, H. Freund (1998)
Human anterior intraparietal area subserves prehensionNeurology, 50
Scott Grafton (2010)
The cognitive neuroscience of prehension: recent developmentsExperimental Brain Research, 204
M. Grol, J. Majdandzic, K. Stephan, L. Verhagen, H. Dijkerman, H. Bekkering, Frans Verstraten, I. Toni (2007)
Parieto-Frontal Connectivity during Visually Guided GraspingThe Journal of Neuroscience, 27
P. Fattori, V. Raos, R. Breveglieri, A. Bosco, Nicoletta Marzocchi, C. Galletti (2010)
The Dorsomedial Pathway Is Not Just for Reaching: Grasping Neurons in the Medial Parieto-Occipital Cortex of the Macaque MonkeyThe Journal of Neuroscience, 30
Jacqueline Snow, Charles Pettypiece, Teresa McAdam, Adam Mclean, P. Stroman, M. Goodale, J. Culham (2011)
Bringing the real world into the fMRI scanner: Repetition effects for pictures versus real objectsScientific Reports, 1
Thomas Nichols, M. Brett, J. Andersson, T. Wager, J. Poline (2005)
Valid conjunction inference with the minimum statisticNeuroImage, 25
J. Culham, S. Danckert, Joseph Souza, J. Gati, Ravi Menon, M. Goodale (2003)
Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areasExperimental Brain Research, 153
R. Johansson, G. Westling (2004)
Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objectsExperimental Brain Research, 56
R. Saxe, M. Brett, N. Kanwisher (2006)
Divide and conquer: A defense of functional localizersNeuroImage, 30
J. Gallivan, C. Cavina-Pratesi, J. Gallivan, C. Cavina-Pratesi, J. Culham
Citation for Published Item: Use Policy Is That within Reach? Fmri Reveals That the Human Superior Parieto-occipital Cortex Encodes Objects Reachable by the Hand
E. Tunik, S. Frey, Scott Grafton (2005)
Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of graspNature Neuroscience, 8
E. Tunik, N. Rice, A. Hamilton, Scott Grafton (2007)
Beyond grasping: Representation of action in human anterior intraparietal sulcusNeuroImage, 36
M. Torrens (1990)
Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268Clinical Radiology, 41
M. Vesia, David Bolton, David Bolton, George Mochizuki, George Mochizuki, W. Staines, W. Staines (2013)
Human parietal and primary motor cortical interactions are selectively modulated during the transport and grip formation of goal-directed hand actionsNeuropsychologia, 51
P. Fattori, M. Gamberini, D. Kutz, C. Galletti (2001)
‘Arm‐reaching’ neurons in the parietal area V6A of the macaque monkeyEuropean Journal of Neuroscience, 13
P. Fattori, D. Kutz, R. Breveglieri, Nicoletta Marzocchi, C. Galletti (2005)
Spatial tuning of reaching activity in the medial parieto‐occipital cortex (area V6A) of macaque monkeyEuropean Journal of Neuroscience, 22
S. Frey, D. Vinton, R. Norlund, Scott Grafton (2005)
Cortical topography of human anterior intraparietal cortex active during visually guided grasping.Brain research. Cognitive brain research, 23 2-3
Mary-Ellen Large, J. Culham, A. Kuchinad, Adrian Aldcroft, T. Vilis (2008)
fMRI reveals greater within‐ than between‐hemifield integration in the human lateral occipital cortexEuropean Journal of Neuroscience, 27
G. Króliczak, C. Cavina-Pratesi, D. Goodman, J. Culham (2007)
What does the brain do when you fake it? An FMRI study of pantomimed and real grasping.Journal of neurophysiology, 97 3
I. Asher, E. Stark, M. Abeles, Y. Prut (2007)
Comparison of direction and object selectivity of local field potentials and single units in macaque posterior parietal cortex during prehension.Journal of neurophysiology, 97 5
Elena Borra, A. Belmalih, Roberta Calzavara, M. Gerbella, A. Murata, S. Rozzi, G. Luppino (2008)
Cortical connections of the macaque anterior intraparietal (AIP) area.Cerebral cortex, 18 5
S. Pitzalis, C. Galletti, Ruey-Song Huang, F. Patria, G. Committeri, G. Galati, P. Fattori, M. Sereno (2006)
Wide-Field Retinotopy Defines Human Cortical Visual Area V6The Journal of Neuroscience, 26
C. Cavina-Pratesi, S. Monaco, P. Fattori, C. Galletti, Teresa McAdam, D. Quinlan, M. Goodale, J. Culham (2010)
Behavioral / Systems / Cognitive Functional Magnetic Resonance Imaging Reveals the Neural Substrates of Arm Transport and Grip Formation in Reach-to-Grasp Actions in Humans
S. Vanni, T. Tanskanen, M. Seppä, K. Uutela, R. Hari (2001)
Coinciding early activation of the human primary visual cortex and anteromedial cuneusProceedings of the National Academy of Sciences of the United States of America, 98
A. Murata, V. Gallese, G. Luppino, M. Kaseda, H. Sakata (2000)
Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP.Journal of neurophysiology, 83 5
K. Portin, S. Salenius, R. Salmelin, R. Hari (1998)
Activation of the human occipital and parietal cortex by pattern and luminance stimuli: neuromagnetic measurements.Cerebral cortex, 8 3
S. Ogawa, D. Tank, Ravi Menon, J. Ellermann, S. Kim, H. Merkle, K. Uğurbil (1992)
Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging.Proceedings of the National Academy of Sciences of the United States of America, 89 13
H. Ehrsson, A. Fagergren, H. Forssberg (2001)
Differential fronto-parietal activation depending on force used in a precision grip task: an fMRI study.Journal of neurophysiology, 85 6
M. Vesia, S. Prime, Xiaogang Yan, L. Sergio, J. Crawford (2010)
Specificity of Human Parietal Saccade and Reach Regions during Transcranial Magnetic StimulationThe Journal of Neuroscience, 30
K. Cole (2008)
Lifting a familiar object: visual size analysis, not memory for object weight, scales lift forceExperimental Brain Research, 188
M. Jeannerod (1981)
Specialized channels for cognitive responsesCognition, 10
S. Monaco, Ying Chen, W. Medendorp, J. Crawford, K. Fiehler, D. Henriques (2014)
Functional magnetic resonance imaging adaptation reveals the cortical networks for processing grasp-relevant object properties.Cerebral cortex, 24 6
J. Gallivan, D. Mclean, Fraser Smith, J. Culham (2011)
Decoding Effector-Dependent and Effector-Independent Movement Intentions from Human Parieto-Frontal Brain ActivityThe Journal of Neuroscience, 31
Karl Friston, P. Fletcher, O. Josephs, A. Holmes, R. Turner (1998)
Event-Related fMRI: Characterizing Differential ResponsesNeuroImage, 7
H. Sawamura, Svetlana Georgieva, R. Vogels, W. Vanduffel, G. Orban (2005)
Using Functional Magnetic Resonance Imaging to Assess Adaptation and Size Invariance of Shape Processing by Humans and MonkeysThe Journal of Neuroscience, 25
E. Chinellato, A. Pobil (2009)
The neuroscience of vision-based grasping: a functional review for computational modeling and bio-inspired robotics.Journal of integrative neuroscience, 8 2
C. Cavina-Pratesi, M. Ietswaart, G. Humphreys, V. Lestou, A. Milner (2010)
Impaired grasping in a patient with optic ataxia: Primary visuomotor deficit or secondary consequence of misreaching?Neuropsychologia, 48
D. Quinlan, J. Culham (2007)
fMRI reveals a preference for near viewing in the human parieto-occipital cortexNeuroImage, 36
C. Begliomini, A. Caria, W. Grodd, U. Castiello (2007)
Comparing Natural and Constrained Movements: New Insights into the Visuomotor Control of GraspingPLoS ONE, 2
Yong Li, Jennifer Randerath, G. Goldenberg, J. Hermsdörfer (2007)
Grip forces isolated from knowledge about object properties following a left parietal lesionNeuroscience Letters, 426
M. Davare, Michael Andres, E. Clerget, J. Thonnard, E. Olivier (2007)
Temporal Dissociation between Hand Shaping and Grip Force Scaling in the Anterior Intraparietal AreaThe Journal of Neuroscience, 27
M. Goodale, D. Westwood (2004)
An evolving view of duplex vision: separate but interacting cortical pathways for perception and actionCurrent Opinion in Neurobiology, 14
Matthias Niemeier, H. Goltz, A. Kuchinad, D. Tweed, T. Vilis (2004)
A contralateral preference in the lateral occipital area: sensory and attentional mechanisms.Cerebral cortex, 15 3
V. Tarantino, Teresa Sanctis, Elisa Straulino, C. Begliomini, U. Castiello (2014)
Object size modulates fronto‐parietal activity during reaching movementsEuropean Journal of Neuroscience, 39
S. Monaco, C. Cavina-Pratesi, A. Sedda, P. Fattori, C. Galletti, J. Culham (2011)
Functional magnetic resonance adaptation reveals the involvement of the dorsomedial stream in hand orientation for grasping.Journal of neurophysiology, 106 5
S. Pitzalis, M. Sereno, G. Committeri, P. Fattori, G. Galati, F. Patria, C. Galletti (2009)
Human V6: The Medial Motion AreaCerebral Cortex (New York, NY), 20
P. Chouinard, Mary-Ellen Large, E. Chang, M. Goodale (2009)
Dissociable neural mechanisms for determining the perceived heaviness of objects and the predicted weight of objects during lifting: An fMRI investigation of the size–weight illusionNeuroImage, 44
J. Gallivan, D. Mclean, Kenneth Valyear, Charles Pettypiece, J. Culham (2011)
Decoding Action Intentions from Preparatory Brain Activity in Human Parieto-Frontal NetworksThe Journal of Neuroscience, 31
K. Grill-Spector, R. Henson, Alex Martin (2006)
Repetition and the brain: neural models of stimulus-specific effectsTrends in Cognitive Sciences, 10
G. Sheean (2008)
Upper Motor Neurone Syndrome and Spasticity: Neurophysiology of spasticity
U. Castiello, C. Begliomini (2008)
The Cortical Control of Visually Guided GraspingThe Neuroscientist, 14
Christina Konen, Ryan Mruczek, Jessica Montoya, S. Kastner (2013)
Functional organization of human posterior parietal cortex: grasping- and reaching-related activations relative to topographically organized cortex.Journal of neurophysiology, 109 12
Christopher Hemond, N. Kanwisher, H. Beeck (2007)
A Preference for Contralateral Stimuli in Human Object- and Face-Selective CortexPLoS ONE, 2
D. Bristow, C. Frith, G. Rees (2005)
Two distinct neural effects of blinking on human visual processingNeuroImage, 27
The visuo‐motor channel hypothesis (Jeannerod, 1981) postulates that grasping movements consist of a grip and a transport component differing in their reliance on intrinsic vs. extrinsic object properties (e.g. size vs. location, respectively). While recent neuroimaging studies have revealed separate brain areas implicated in grip and transport components within the parietal lobe, less is known about the neural processing of extrinsic and intrinsic properties of objects for grasping actions. We used functional magnetic resonance imaging adaptation to examine the cortical areas involved in processing object size, object location or both. Participants grasped (using the dominant right hand) or passively viewed sequential pairs of objects that could differ in size, location or both. We hypothesized that if intrinsic and extrinsic object properties are processed separately, as suggested by the visuo‐motor channel hypothesis, we would observe adaptation to object size in areas that code the grip and adaptation to location in areas that code the transport component. On the other hand, if intrinsic and extrinsic object properties are not processed separately, brain areas involved in grasping may show adaptation to both object size and location. We found adaptation to object size for grasping movements in the left anterior intraparietal sulcus (aIPS), in agreement with the idea that object size is processed separately from location. In addition, the left superior parietal occipital sulcus (SPOC), primary somatosensory and motor area (S1/M1), precuneus, dorsal premotor cortex (PMd), and supplementary motor area (SMA) showed non‐additive adaptation to both object size and location. We propose different roles for the aIPS as compared with the SPOC, S1/M1, precuneus, PMd and SMA. In particular, while the aIPS codes intrinsic object properties, which are relevant for hand preshaping and force scaling, area SPOC, S1/M1, precuneus, PMd and SMA code intrinsic as well as extrinsic object properties, both of which are relevant for digit positioning during grasping.
European Journal of Neuroscience – Wiley
Published: Feb 1, 2015
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.