Access the full text.
Sign up today, get DeepDyve free for 14 days.
C. Proenza, D. Angoli, Eugene Agranovich, Vincenzo Macrì, E. Accili (2002)
Pacemaker Channels Produce an Instantaneous Current*The Journal of Biological Chemistry, 277
A. Busch, H. Suessbrich (1997)
Role of the ISK protein in the IminK channel complex.Trends in pharmacological sciences, 18 1
T. Furukawa, Y. Ono, Hiroyuki Tsuchiya, Y. Katayama, M. Bang, D. Labeit, S. Labeit, N. Inagaki, C. Gregorio (2001)
Specific interaction of the potassium channel beta-subunit minK with the sarcomeric protein T-cap suggests a T-tubule-myofibril linking system.Journal of molecular biology, 313 4
F. Spreafico, J. Barski, C. Farina, M. Meyer (2001)
Mouse DREAM/Calsenilin/KChIP3: Gene Structure, Coding Potential, and ExpressionMolecular and Cellular Neuroscience, 17
Eric Honoré, Bernard Attali, G. Romey, C. Heurteaux, P. Ricard, Florian Lesage, M. Lazdunski, J. Barhanin (1991)
Cloning, expression, pharmacology and regulation of a delayed rectifier K+ channel in mouse heart.The EMBO Journal, 10
R. Mazhari, J. Greenstein, R. Winslow, E. Marbán, H. Nuss (2001)
Molecular Interactions Between Two Long-QT Syndrome Gene Products, HERG and KCNE2, Rationalized by In Vitro and In Silico AnalysisCirculation Research: Journal of the American Heart Association, 89
Toshiya Murai, A. Kakizuka, T. Takumi, H. Ohkubo, S. Nakanishi (1989)
Molecular cloning and sequence analysis of human genomic DNA encoding a novel membrane protein which exhibits a slowly activating potassium channel activity.Biochemical and biophysical research communications, 161 1
S. Ohya, Y. Morohashi, K. Muraki, T. Tomita, M. Watanabe, T. Iwatsubo, Y. Imaizumi (2001)
Molecular cloning and expression of the novel splice variants of K(+) channel-interacting protein 2.Biochemical and biophysical research communications, 282 1
I. Abitbol, A. Peretz, C. Lerche, A. Busch, B. Attali (1999)
Stilbenes and fenamates rescue the loss of IKS channel function induced by an LQT5 mutation and other IsK mutantsThe EMBO Journal, 18
S. Nattel (1999)
The Molecular and Ionic Specificity of Antiarrhythmic Drug ActionsJournal of Cardiovascular Electrophysiology, 10
F. Sesti, G. Abbott, Jian Wei, K. Murray, S. Saksena, P. Schwartz, S. Priori, D. Roden, A. George, S. Goldstein (2000)
A common polymorphism associated with antibiotic-induced cardiac arrhythmia.Proceedings of the National Academy of Sciences of the United States of America, 97 19
B. Valdez, D. Henning, L. Perlaky, R. Busch, H. Busch (1997)
Cloning and characterization of Gu/RH-II binding protein.Biochemical and biophysical research communications, 234 2
(1990)
Cardiac Accessory K-channel Subunits
Diego Franco, Diego Franco, S. Demolombe, S. Demolombe, S. Kupershmidt, R. Dumaine, J. Domínguez, D. Roden, C. Antzelevitch, D. Escande, A. Moorman (2001)
Divergent expression of delayed rectifier K(+) channel subunits during mouse heart development.Cardiovascular research, 52 1
Danshi Li, P. Melnyk, Jianlin Feng, Zhiguo Wang, K. Petrecca, A. Shrier, S. Nattel (2000)
Effects of experimental heart failure on atrial cellular and ionic electrophysiology.Circulation, 101 22
S. Kupershmidt, T. Yang, M. Anderson, A. Wessels, K. Niswender, M. Magnuson, D. Roden (1999)
Replacement by homologous recombination of the minK gene with lacZ reveals restriction of minK expression to the mouse cardiac conduction system.Circulation research, 84 2
A. Busch, G. Busch, E. Ford, H. Suessbrich, H. Lang, R. Greger, K. Kunzelmann, B. Attali, W. Stühmer (1997)
The role of the IsK protein in the specific pharmacological properties of the IKs channel complexBritish Journal of Pharmacology, 122
Sangita Patel, D. Campbell, H. Strauss (2002)
Elucidating KChiP effects on Kv4.3 inactivation and recovery kinetics with a minimal KChiP2 isoformThe Journal of Physiology, 545
K. Takimoto, E. Yang, L. Conforti (2002)
Palmitoylation of KChIP Splicing Variants Is Required for Efficient Cell Surface Expression of Kv4.3 Channels*The Journal of Biological Chemistry, 277
A. Tapper, A. George (2000)
Mink Subdomains That Mediate Modulation of and Association with Kvlqt1The Journal of General Physiology, 116
S. Demolombe, I. Baró, Y. Péréon, J. Bliek, R. Mohammad-Panah, Hélène Pollard, Shabnam Morid, M. Mannens, A. Wilde, J. Barhanin, F. Charpentier, D. Escande (1998)
A Dominant Negative Isoform of the Long QT Syndrome 1 Gene Product*The Journal of Biological Chemistry, 273
B. Attali, Georges RomeyS, Erick Honores, Annie Schmid-AllianaS, Marie-Genevieve Matteili, Florian LesageS, Philippe RicardS, Jacques BarhaninSII, Michel Lazdunskis (1992)
Cloning, functional expression, and regulation of two K+ channels in human T lymphocytes.The Journal of biological chemistry, 267 12
E. Blumenthal, L. Kaczmarek (1992)
Structure and regulation of the MinK potassium channelNeurochemical Research, 17
Weinong Guo, Huilin Li, F. Aimond, D. Johns, K. Rhodes, J. Trimmer, J. Nerbonne (2002)
Role of Heteromultimers in the Generation of Myocardial Transient Outward K+ CurrentsCirculation Research: Journal of the American Heart Association, 90
T. Takumi, K. Moriyoshi, I. Aramori, T. Ishii, Shigetoshi Oikit, Y. OKADAt, Hiroaki OhkuboV, S. Nakanishi (1991)
Alteration of channel activities and gating by mutations of slow ISK potassium channel.The Journal of biological chemistry, 266 33
J. Kurokawa, H. Motoike, R. Kass (2001)
Tea+-Sensitive Kcnq1 Constructs Reveal Pore-Independent Access to Kcne1 in Assembled I Ks ChannelsThe Journal of General Physiology, 117
A. Busch, S. Waldegger, Tobias Herzer, G. Raber, E. Gulbins, T. Takumi, K. Moriyoshi, S. Nakanishi, F. Lang (1995)
Molecular Basis of IaK Protein Regulation by Oxidation or Chelation (*)The Journal of Biological Chemistry, 270
G. Schram, M. Pourrier, P. Melnyk, S. Nattel (2002)
Differential Distribution of Cardiac Ion Channel Expression as a Basis for Regional Specialization in Electrical FunctionCirculation Research: Journal of the American Heart Association, 90
References An, M. Bowlby, M. Betty, J. Cao, H. Ling, G. Mendoza, J. Hinson, K. Mattsson, B. Strassle, J. Trimmer, K. Rhodes, R. Bahring, J. Dannenberg, H. Peters, T. Leicher, O. Pongs, O. Callaghan, B. Hasdemir, M. Leighton, R. Burgoyne, R. Shibata, H. Misonou, C. Campomanes, A. Anderson, L. Schrader, L. Doliveira, K. Carroll, J. Sweatt, J. Trimmer, Funda, C. Zhang, A. Rosenwald, M. Willingham, S. Skuntz, J. Clark, R. Kahn (2001)
Conserved Kv4 N-terminal Domain Critical for Effects of Kv Channel-interacting Protein 2.2 on Channel Expression and Gating*The Journal of Biological Chemistry, 276
I. Splawski, M. Tristani-Firouzi, M. Lehmann, M. Sanguinetti, M. Keating (1997)
Mutations in the hminK gene cause long QT syndrome and suppress lKs functionNature Genetics, 17
Karin Dedek, S. Waldegger (2001)
Colocalization of KCNQ1/KCNE channel subunits in the mouse gastrointestinal tractPflügers Archiv, 442
Hideo Ohyama, H. Kajita, K. Omori, T. Takumi, N. Hiramoto, T. Iwasaka, H. Matsuda (2001)
Inhibition of cardiac delayed rectifier K+ currents by an antisense oligodeoxynucleotide against IsK (minK) and over-expression of IsK mutant D77N in neonatal mouse heartsPflügers Archiv, 442
G. Abbott, F. Sesti, I. Splawski, M. Buck, M. Lehmann, K. Timothy, M. Keating, S. Goldstein (1999)
MiRP1 Forms IKr Potassium Channels with HERG and Is Associated with Cardiac ArrhythmiaCell, 97
F. Sesti, S. Goldstein (1998)
Single-Channel Characteristics of Wild-Type IKs Channels and Channels formed with Two MinK Mutants that Cause Long QT SyndromeThe Journal of General Physiology, 112
D. Papazian, T. Schwarz, B. Tempel, Y. Jan, L. Jan (1987)
Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila.Science, 237 4816
(2002)
Circulation 106:II–47 (Abstract
R. Mazhari, H. Nuss, A. Armoundas, R. Winslow, E. Marbán (2002)
Ectopic expression of KCNE3 accelerates cardiac repolarization and abbreviates the QT interval.The Journal of clinical investigation, 109 8
Sangita Patel, D. Campbell, M. Morales, H. Strauss (2002)
Heterogeneous expression of KChIP2 isoforms in the ferret heartThe Journal of Physiology, 539
M. Holmqvist, Jie Cao, R. Hernández-Pineda, M. Jacobson, K. Carroll, M. Sung, M. Betty, P. Ge, K. Gilbride, Melissa Brown, M. Jurman, D. Lawson, I. Silos-santiago, Yu Xie, M. Covarrubias, K. Rhodes, P. Distefano, W. An (2002)
Elimination of fast inactivation in Kv4 A-type potassium channels by an auxiliary subunit domainProceedings of the National Academy of Sciences of the United States of America, 99
Mei Zhang, M. Jiang, G. Tseng (2001)
MinK-Related Peptide 1 Associates With Kv4.2 and Modulates Its Gating Function: Potential Role as &bgr; Subunit of Cardiac Transient Outward Channel?Circulation Research: Journal of the American Heart Association, 88
E. Schulze-Bahr, Qing Wang, H. Wedekind, W. Haverkamp, Qiuyun Chen, Yaling Sun, Claudia Ruble, M. Hördt, J. Towbin, M. Borggrefe, G. Assmann, Xiangdong Qu, J. Somberg, G. Breithardt, C. Oberti, H. Funke (1997)
KCNE1 mutations cause Jervell and Lange-Nielsen syndromeNature Genetics, 17
J. Darnell, I. Kerr, George Stark (1994)
Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins.Science, 264 5164
S. Nattel, P. Khairy, G. Schram (2001)
Arrhythmogenic ionic remodeling: adaptive responses with maladaptive consequences.Trends in cardiovascular medicine, 11 7
B. Wible, Liming Wang, Y. Kuryshev, A. Basu, S. Haldar, A. Brown (2002)
Increased K+ Efflux and Apoptosis Induced by the Potassium Channel Modulatory Protein KChAP/PIAS3β in Prostate Cancer Cells*The Journal of Biological Chemistry, 277
M. Drici, I. Arrighi, C. Chouabe, J. Mann, M. Lazdunski, G. Romey, J. Barhanin (1998)
Involvement of IsK-associated K+ channel in heart rate control of repolarization in a murine engineered model of Jervell and Lange-Nielsen syndrome.Circulation research, 83 1
L. Lai, M. Su, H. Yeh, Jiunn-lee Lin, F. Chiang, Juey-Jen Hwang, K. Hsu, C. Tseng, W. Lien, Y. Tseng, S. Huang (2002)
Association of the human minK gene 38G allele with atrial fibrillation: evidence of possible genetic control on the pathogenesis of atrial fibrillation.American heart journal, 144 3
G. Abbott, M. Butler, S. Bendahhou, M. Dalakas, L. Ptáček, S. Goldstein (2001)
MiRP2 Forms Potassium Channels in Skeletal Muscle with Kv3.4 and Is Associated with Periodic ParalysisCell, 104
J. Barhanin, F. Lesage, E. Guillemare, M. Fink, M. Lazdunski, G. Romey (1996)
KvLQT1 and IsK (minK) proteins associate to form the IKS cardiac potassium currentNature, 384
W. An, M. Bowlby, M. Betty, Jie Cao, H. Ling, Grace Mendoza, J. Hinson, Karen Mattsson, B. Strassle, J. Trimmer, K. Rhodes (2000)
Modulation of A-type potassium channels by a family of calcium sensorsNature, 403
C. Lerche, G. Seebohm, C. Wagner, C. Scherer, L. Dehmelt, I. Abitbol, Uwe Gerlach, Joachim Brendel, Bernard Attali, Andreas Busch (2000)
Molecular impact of MinK on the enantiospecific block of IKs by chromanolsBritish Journal of Pharmacology, 131
Shimin Wang, Sangita Patel, Yu-jie Qu, P. Hua, H. Strauss, M. Morales (2002)
Kinetic properties of Kv4.3 and their modulation by KChIP2b.Biochemical and biophysical research communications, 295 2
T. Yang, S. Kupershmidt, D. Roden (1995)
Anti-minK antisense decreases the amplitude of the rapidly activating cardiac delayed rectifier K+ current.Circulation research, 77 6
T. Takumi, H. Ohkubo, S. Nakanishi (1988)
Cloning of a membrane protein that induces a slow voltage-gated potassium current.Science, 242 4881
G. Loussouarn, F. Charpentier, R. Mohammad-Panah, K. Kunzelmann, I. Baró, D. Escande (1997)
KvLQT1 potassium channel but not IsK is the molecular target for trans-6-cyano-4-(N-ethylsulfonyl-N-methylamino)-3-hydroxy-2,2-dimethyl- chromane.Molecular pharmacology, 52 6
B. Rosati, Z. Pan, Steven Lypen, Hong-Sheng Wang, I. Cohen, J. Dixon, D. Mckinnon (2001)
Regulation of KChIP2 potassium channel β subunit gene expression underlies the gradient of transient outward current in canine and human ventricleThe Journal of Physiology, 533
E. Blumenthal, L. Kaczmarek (1994)
The minK potassium channel exists in functional and nonfunctional forms when expressed in the plasma membrane of Xenopus oocytes, 14
M. Weerapura, S. Nattel, D. Chartier, R. Caballero, T. Hébert (2002)
A comparison of currents carried by HERG, with and without coexpression of MiRP1, and the native rapid delayed rectifier current. Is MiRP1 the missing link?The Journal of Physiology, 540
G. Abbott, S. Goldstein (2002)
Disease‐associated mutations in KCNE potassium channel subunits (MiRPs) reveal promiscuous disruption of multiple currents and conservation of mechanismThe FASEB Journal, 16
J. Cui, A. Kagan, Danmei Qin, Jehu Mathew, Y. Melman, T. McDonald (2001)
Analysis of the Cyclic Nucleotide Binding Domain of the HERG Potassium Channel and Interactions with KCNE2*The Journal of Biological Chemistry, 276
S. Oiki, T. Takumi, Y. Okada, S. Nakanishi (1993)
Alterations of Gating Parameters by Neutral Substitutions of Transmembrane Leu52 of Slow Potassium ChannelAnnals of the New York Academy of Sciences, 707
N. Decher, O. Uyguner, C. Scherer, B. Karaman, M. Yüksel‐Apak, A. Busch, K. Steinmeyer, B. Wollnik (2001)
hKChIP2 is a functional modifier of hKv4.3 potassium channels: cloning and expression of a short hKChIP2 splice variant.Cardiovascular research, 52 2
S. Nattel, M. Quantz (1988)
Pharmacological response of quinidine induced early afterdepolarisations in canine cardiac Purkinje fibres: insights into underlying ionic mechanisms.Cardiovascular research, 22 11
J. Tyson, L. Tranebjærg, S. Bellman, Christopher Wren, James Taylor, J. Bathen, Bjørn Aslaksen, S. Sørland, Ole Lund, S. Malcolm, M. Pembrey, S. Bhattacharya, M. Bitner-Glindzicz (1997)
IsK and KvLQT1: mutation in either of the two subunits of the slow component of the delayed rectifier potassium channel can cause Jervell and Lange-Nielsen syndrome.Human molecular genetics, 6 12
J. Martens, Y. Kwak, M. Tamkun (1999)
Modulation of Kv Channel α/β Subunit InteractionsTrends in Cardiovascular Medicine, 9
N. Tinel, S. Diochot, M. Borsotto, M. Lazdunski, J. Barhanin (2000)
KCNE2 confers background current characteristics to the cardiac KCNQ1 potassium channelThe EMBO Journal, 19
T. Sugimoto, Y. Tanabe, R. Shigemoto, M. Iwai, T. Takumi, H. Ohkubo, S. Nakanishi (2005)
Immunohistochemical study of a rat membrane protein which induces a selective potassium permeation: Its localization in the apical membrane portion of epithelial cellsThe Journal of Membrane Biology, 113
E. Wettwer, G. Amos, H. Posival, U. Ravens (1994)
Transient outward current in human ventricular myocytes of subepicardial and subendocardial origin.Circulation research, 75 3
F. Sesti, K. Tai, S. Goldstein (2000)
MinK endows the I(Ks) potassium channel pore with sensitivity to internal tetraethylammonium.Biophysical journal, 79 3
C. Chiang, D. Roden (2000)
The long QT syndromes: genetic basis and clinical implications.Journal of the American College of Cardiology, 36 1
P. Volders, K. Sipido, M. Vos, R. Spätjens, J. Leunissen, E. Carmeliet, H. Wellens (1999)
Downregulation of delayed rectifier K(+) currents in dogs with chronic complete atrioventricular block and acquired torsades de pointes.Circulation, 100 24
Michael Nabauer, Dirk Beuckelmann, P. Überfuhr, Gerhard Steinbeck (1996)
Regional differences in current density and rate-dependent properties of the transient outward current in subepicardial and subendocardial myocytes of human left ventricle.Circulation, 93 1
Priya Duggal, M. Vesely, D. Wattanasirichaigoon, J. Villafane, Vineet Kaushik, A. Beggs (1998)
Mutation of the gene for IsK associated with both Jervell and Lange-Nielsen and Romano-Ward forms of Long-QT syndrome.Circulation, 97 2
L. Kaczmarek, E. Blumenthal (1997)
Properties and regulation of the minK potassium channel protein.Physiological reviews, 77 3
Hai‐Chien Kuo, Ching-Feng Cheng, R. Clark, J. Lin, J. Lin, M. Hoshijima, V. Nguyen-Tran, Yusu Gu, Y. Ikeda, Po-Hsien Chu, J. Ross, W. Giles, K. Chien (2001)
A Defect in the Kv Channel-Interacting Protein 2 (KChIP2) Gene Leads to a Complete Loss of I to and Confers Susceptibility to Ventricular TachycardiaCell, 107
Yukiomi Tsuji, T. Opthof, K. Kamiya, K. Yasui, Weiran Liu, Zhibo Lu, I. Kodama (2000)
Pacing-induced heart failure causes a reduction of delayed rectifier potassium currents along with decreases in calcium and transient outward currents in rabbit ventricle.Cardiovascular research, 48 2
I. Deschênes, D. Disilvestre, George Juang, Richard Wu, W. An, Gordon Tomaselli (2002)
Regulation of Kv4.3 Current by KChIP2 Splice Variants: A Component of Native Cardiac Ito?Circulation: Journal of the American Heart Association, 106
C. Lo, R. Numann (1999)
PKC Modulation of MinK Current Involves Multiple Phosphorylation SitesAnnals of the New York Academy of Sciences, 868
T. McDonald, Zhihui Yu, Z. Ming, E. Palma, M. Meyers, Ke-Wei Wang, S. Goldstein, G. Fishman (1997)
A minK–HERG complex regulates the cardiac potassium current IKrNature, 388
Gary Wilson, A. Sivaprasadarao, J. Findlay, D. Wray (1994)
Changes in activation gating of IsK potassium currents brought about by mutations in the transmembrane sequenceFEBS Letters, 353
A. Busch, M. Varnum, R. North, J. Adelman (1992)
An amino acid mutation in a potassium channel that prevents inhibition by protein kinase C.Science, 255 5052
W. Han, Weisheng Bao, Zhiguo Wang, S. Nattel (2002)
Comparison of Ion-Channel Subunit Expression in Canine Cardiac Purkinje Fibers and Ventricular MuscleCirculation Research: Journal of the American Heart Association, 91
Björn Schroeder, S. Waldegger, S. Fehr, M. Bleich, R. Warth, R. Greger, T. Jentsch (2000)
A constitutively open potassium channel formed by KCNQ1 and KCNE3Nature, 403
G. Romey, B. Attali, C. Chouabe, I. Abitbol, E. Guillemare, J. Barhanin, M. Lazdunski (1997)
Molecular Mechanism and Functional Significance of the MinK Control of the KvLQT1 Channel Activity*The Journal of Biological Chemistry, 272
L. Freeman, R. Kass (1993)
Expression of a minimal K+ channel protein in mammalian cells and immunolocalization in guinea pig heart.Circulation research, 73 5
(2002)
Biophysical Journal 82:605A–606A
Da-Wei Liu, G. Gintant, Charles Antzelevitch (1993)
Ionic bases for electrophysiological distinctions among epicardial, midmyocardial, and endocardial myocytes from the free wall of the canine left ventricle.Circulation research, 72 3
B. Wible, Qing Yang, Y. Kuryshev, E. Accili, A. Brown (1998)
Cloning and Expression of a Novel K+ Channel Regulatory Protein, KChAP*The Journal of Biological Chemistry, 273
M. Sanguinetti, M. Curran, A. Zou, Jiaxiang Shen, P. Spector, D. Atkinson, M. Keating (1996)
Coassembly of KVLQT1 and minK (IsK) proteins to form cardiac IKS potassium channelNature, 384
M. Tristani-Firouzi, M. Sanguinetti (1998)
Voltage‐dependent inactivation of the human K+ channel KvLQT1 is eliminated by association with minimal K+ channel (minK) subunitsThe Journal of Physiology, 510
Ling Lai, Chun-Ling Deng, A. Moss, R. Kass, C. Liang (1994)
Polymorphism of the gene encoding a human minimal potassium ion channel (minK).Gene, 151 1-2
K. Tai, S. Goldstein (1998)
The conduction pore of a cardiac potassium channelNature, 391
Over the past 10 years, cDNAs encoding a wide range of pore-forming K+-channel α-subunits have been cloned and found to result in currents with many properties of endogenous cardiac K+ channels upon homomeric expression in heterologous systems. However, a variety of remaining discrepancies have led to a search for other subunits that might be involved in the formation of native channels. Over the past few years, a series of accessory subunits has been discovered that modify current properties upon coexpression with α-subunits. One of these, the minimal K+-channel subunit minK, is essential for formation of the cardiac slow delayed-rectifier K+ current, I Ks, and may also interact in functionally important ways with other α-subunits. Another, the K+-channel interacting protein KChIP appears critical in formation of native transient outward current (I to) channels. The roles of 2 other accessory subunits, the minK-related peptide MiRP and the K+-channel accessory protein, KChAP, remain unclear. This article reviews the available knowledge regarding the accessory subunits minK, MiRP, KChIP and KChAP, dealing with their structure, effects on currents carried by coexpressed α-subunits, expression in cardiac tissues and potential physiological function. On the basis of the available information, we attempt to assess the potential involvement of these accessory K+-channel subunits in cardiac pathophysiology and in developing new therapeutic approaches.
The Journal of Membrane Biology – Springer Journals
Published: Sep 19, 2003
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.