Access the full text.
Sign up today, get DeepDyve free for 14 days.
G. Klapstein, R. Fisher, H. Zanjani, C. Cepeda, E. Jokel, M. Chesselet, M. Levine (2001)
Electrophysiological and Morphological Changes in Striatal Spiny Neurons in R 6 / 2 Huntington ’ s Disease Transgenic Mice
R. Carter, L. Lione, T. Humby, L. Mangiarini, A. Mahal, G. Bates, S. Dunnett, A. Morton, J. Morton (1999)
Characterization of Progressive Motor Deficits in Mice Transgenic for the Human Huntington’s Disease MutationThe Journal of Neuroscience, 19
J. Vonsattel, R. Myers, Thomas Stevens, R. Ferrante, E. Bird, E. Richardson (1985)
Neuropathological Classification of Huntington's DiseaseJournal of Neuropathology and Experimental Neurology, 44
C. Meade, Yunping Deng, F. Fusco, N. Mar, S. Hersch, D. Goldowitz, A. Reiner (2002)
Cellular localization and development of neuronal intranuclear inclusions in striatal and cortical neurons in R6/2 transgenic miceJournal of Comparative Neurology, 449
D. Martindale, A. Hackam, A. Wieczorek, L. Ellerby, C. Wellington, K. McCutcheon, R. Singaraja, P. Kazemi-Esfarjani, R. Devon, Seung Kim, D. Bredesen, F. Tufaro, M. Hayden (1998)
Length of huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregatesNature Genetics, 18
H. Lüesse, J. Schiefer, Arne Spruenken, C. Puls, F. Block, C. Kosinski (2001)
Evaluation of R6/2 HD transgenic mice for therapeutic studies in Huntington's disease: behavioral testing and impact of diabetes mellitusBehavioural Brain Research, 126
D. Hardie, D. Carling, M. Carlson (1998)
The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell?Annual review of biochemistry, 67
M. Perutz (1999)
Glutamine repeats and neurodegenerative diseases: molecular aspects.Trends in biochemical sciences, 24 2
R. Ferrante, Ole Andreassen, B. Jenkins, A. Dedeoglu, S. Kuemmerle, James Kubilus, R. Kaddurah-Daouk, S. Hersch, M. Beal (2000)
Neuroprotective Effects of Creatine in a Transgenic Mouse Model of Huntington's DiseaseThe Journal of Neuroscience, 20
Nai-Kuei Huang, Ya-Wen Lin, Chuen‐Lin Huang, R. Messing, Y. Chern (2001)
Activation of Protein Kinase A and Atypical Protein Kinase C by A2A Adenosine Receptors Antagonizes Apoptosis Due to Serum Deprivation in PC12 Cells*The Journal of Biological Chemistry, 276
Varani (2001)
Aberrant amplification of A (2A) receptor signaling in striatal cells expressing mutant huntingtinFaseb J., 15
N. Waters, E. Holmes, C. Waterfield, R. Farrant, J. Nicholson (2002)
NMR and pattern recognition studies on liver extracts and intact livers from rats treated with alpha-naphthylisothiocyanate.Biochemical pharmacology, 64 1
K. Varani, M. Abbracchio, M. Cannella, G. Cislaghi, P. Giallonardo, C. Mariotti, E. Cattabriga, F. Cattabeni, P. Borea, F. Squitieri, E. Cattaneo (2003)
Aberrant A2A receptor function in peripheral blood cells in Huntington's diseaseThe FASEB Journal, 17
The FASEB Journal express article 10.1096/fj.00-0730fje. Published online March 5, 2001. Aberrant amplification of A2A receptor signaling in striatal cells expressing mutant huntingtin
Y. Chern, K. King, H. Lai, H. Lai (1992)
Molecular cloning of a novel adenosine receptor gene from rat brain.Biochemical and biophysical research communications, 185 1
Hsiao-Chun Cheng, H. Shih, Y. Chern (2002)
Essential Role of cAMP-response Element-binding Protein Activation by A2A Adenosine Receptors in Rescuing the Nerve Growth Factor-induced Neurite Outgrowth Impaired by Blockage of the MAPK Cascade*The Journal of Biological Chemistry, 277
G. Klapstein, R. Fisher, H. Zanjani, C. Cepeda, E. Jokel, M. Chesselet, M. Levine (2001)
Electrophysiological and morphological changes in striatal spiny neurons in R6/2 Huntington's disease transgenic mice.Journal of neurophysiology, 86 6
Blair Walker, C. Rocchini, R. Boone, S. Ip, Marlene Jacobson (1997)
Adenosine A2a receptor activation delays apoptosis in human neutrophils.Journal of immunology, 158 6
R. Pratley, A. Salbe, E. Ravussin, J. Caviness (2000)
Higher sedentary energy expenditure in patients with Huntington's diseaseAnnals of Neurology, 47
J. Fink, A. Kalda, H. Ryu, E. Stack, M. Schwarzschild, Jiang-fan Chen, R. Ferrante (2003)
Genetic and pharmacological inactivation of the adenosine A2A receptor attenuates 3‐nitropropionic acid‐induced striatal damageJournal of Neurochemistry, 88
M. Hickey, A. Morton (2000)
Mice Transgenic for the Huntington's Disease Mutation Are Resistant to Chronic 3‐Nitropropionic Acid‐Induced Striatal ToxicityJournal of Neurochemistry, 75
M. Gårseth, U. Sonnewald, L. White, M. Rød, J. Zwart, Ø. Nygaard, J. Aasly (2000)
Proton magnetic resonance spectroscopy of cerebrospinal fluid in neurodegenerative disease: Indication of glial energy impairment in Huntington chorea, but not Parkinson diseaseJournal of Neuroscience Research, 60
J. Couzin (2004)
Huntington's disease. Unorthodox clinical trials meld science and care.Science, 304 5672
Boris Spektor, David Miller, Z. Hollingsworth, Y. Kaneko, S. Solano, Jennifer Johnson, J. Penney, A. Young, R. Luthi-Carter (2002)
Differential D1 and D2 receptor-mediated effects on immediate early gene induction in a transgenic mouse model of Huntington's disease.Brain research. Molecular brain research, 102 1-2
Y. Chern, Eminy Lee, H. Lai, Hai-Long Wang, Yi-Chao Lee, Y. Ching (1996)
Circadian rhythm in the Ca2+‐inhibitable adenylyl cyclase activity of the rat striatumFEBS Letters, 385
G. Rutter, G. Xavier, I. Leclerc (2003)
Roles of 5'-AMP-activated protein kinase (AMPK) in mammalian glucose homoeostasis.The Biochemical journal, 375 Pt 1
Motomasa Tanaka, Yoko Machida, Sanyong Niu, T. Ikeda, N. Jana, H. Doi, M. Kurosawa, Munenori Nekooki, N. Nukina (2004)
Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington diseaseNature Medicine, 10
Y. Hong, U. Varanasi, Wenbo Yang, T. Leff (2003)
AMP-activated Protein Kinase Regulates HNF4α Transcriptional Activity by Inhibiting Dimer Formation and Decreasing Protein Stability*Journal of Biological Chemistry, 278
Y. Chu, K. Tu, Y. Lee, Z. Kuo, H. Lai, Y. Chern (1996)
Characterization of the rat A2a adenosine receptor gene.DNA and cell biology, 15 4
W. Winder, H. Wilson, D. Hardie, Blake Rasmussen, C. Hutber, Gerald Call, R. Clayton, L. Conley, S. Yoon, B. Zhou (1997)
Phosphorylation of rat muscle acetyl-CoA carboxylase by AMP-activated protein kinase and protein kinase A.Journal of applied physiology, 82 1
J. Cha, C. Kosinski, J. Kerner, S. Alsdorf, L. Mangiarini, S. Davies, J. Penney, G. Bates, A. Young (1998)
Altered brain neurotransmitter receptors in transgenic mice expressing a portion of an abnormal human huntington disease gene.Proceedings of the National Academy of Sciences of the United States of America, 95 11
E. Lee, S. Liu, K. Lu, W. Lin (1992)
Comparative studies of the neurotoxicity of MPTP in rats of different ages.The Chinese journal of physiology, 35 4
Edmond Chan, R. Luthi-Carter, A. Strand, S. Solano, S. Hanson, Molly DeJohn, C. Kooperberg, K. Chase, M. Difiglia, A. Young, B. Leavitt, J. Cha, N. Aronin, M. Hayden, J. Olson (2002)
Increased huntingtin protein length reduces the number of polyglutamine-induced gene expression changes in mouse models of Huntington's disease.Human molecular genetics, 11 17
O. Hansson, Å. Petersén, M. Leist, P. Nicotera, R. Castilho, P. Brundin (1999)
Transgenic mice expressing a Huntington's disease mutation are resistant to quinolinic acid-induced striatal excitotoxicity.Proceedings of the National Academy of Sciences of the United States of America, 96 15
V. Ona, Mingwei Li, J. Vonsattel, L. Andrews, Sohail Khan, W. Chung, A. Frey, A. Menon, Xiao-Jiang Li, P. Stieg, Junying Yuan, J. Penney, A. Young, J. Cha, R. Friedlander (1999)
Inhibition of caspase-1 slows disease progression in a mouse model of Huntington's diseaseNature, 399
H. Lai, Te-Hsun Yang, R. Messing, Y. Ching, S. Lin, Y. Chern (1997)
Protein Kinase C Inhibits Adenylyl Cyclase Type VI Activity during Desensitization of the A2a-Adenosine Receptor-mediated cAMP Response*The Journal of Biological Chemistry, 272
P. Calabresi, D. Centonze, G. Bernardi (2000)
Cellular factors controlling neuronal vulnerability in the brainNeurology, 55
S. Podolsky, NormanA. Leopold, D. Sax (1972)
Increased frequency of diabetes mellitus in patients with Huntington's chorea.Lancet, 1 7765
L. Fryer, Asha Parbu-Patel, D. Carling (2002)
The Anti-diabetic Drugs Rosiglitazone and Metformin Stimulate AMP-activated Protein Kinase through Distinct Signaling Pathways*The Journal of Biological Chemistry, 277
R. Luthi-Carter, A. Strand, S. Hanson, C. Kooperberg, Gabriele Schilling, A. Spada, D. Merry, A. Young, C. Ross, D. Borchelt, J. Olson (2002)
Polyglutamine and transcription: gene expression changes shared by DRPLA and Huntington's disease mouse models reveal context-independent effects.Human molecular genetics, 11 17
O. Quarrell (2001)
Glutamine repeats and neurodegenerative diseases: molecular aspectsHuman Genetics, 109
J. Couzin (2004)
Unorthodox Clinical Trials Meld Science and CareScience, 304
W. Duan, Zhihong Guo, Haiyang Jiang, M. Ware, Xiao-Jiang Li, M. Mattson (2003)
Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant miceProceedings of the National Academy of Sciences of the United States of America, 100
M. Hurlbert, Wenbo Zhou, C. Wasmeier, F. Kaddis, J. Hutton, C. Freed (1999)
Mice transgenic for an expanded CAG repeat in the Huntington's disease gene develop diabetes.Diabetes, 48 3
R. Zimmerman, Zhiyue Wang (1999)
Proton magnetic resonance spectroscopyCritical Reviews in Neurosurgery, 9
B. Jenkins, P. Klivényi, Ekkehard Kustermann, O. Andreassen, R. Ferrante, B. Rosen, M. Beal (2000)
Nonlinear Decrease over Time in N‐Acetyl Aspartate Levels in the Absence of Neuronal Loss and Increases in Glutamine and Glucose in Transgenic Huntington's Disease MiceJournal of Neurochemistry, 74
M. Ehrlich, L. Conti, M. Toselli, Luca Taglietti, E. Fiorillo, V. Taglietti, S. Ivkovic, B. Guinea, A. Tranberg, S. Sipione, D. Rigamonti, E. Cattaneo (2001)
ST14A Cells Have Properties of a Medium-Size Spiny NeuronExperimental Neurology, 167
T. Tsuboi, G. Xavier, I. Leclerc, G. Rutter (2003)
5′-AMP-activated Protein Kinase Controls Insulin-containing Secretory Vesicle Dynamics*Journal of Biological Chemistry, 278
D. Blum, M. Galas, A. Pintor, E. Brouillet, C. Ledent, C. Műller, K. Bantubungi, M. Galluzzo, D. Gall, L. Cuvelier, Anne‐Sophie Rolland, P. Popoli, S. Schiffmann (2003)
A Dual Role of Adenosine A2A Receptors in 3-Nitropropionic Acid-Induced Striatal Lesions: Implications for the Neuroprotective Potential of A2A AntagonistsThe Journal of Neuroscience, 23
M. Glass, M. Dragunow, R. Faull (2000)
The pattern of neurodegeneration in Huntington's disease: a comparative study of cannabinoid, dopamine, adenosine and GABAA receptor alterations in the human basal ganglia in Huntington's diseaseNeuroscience, 97
Y. Chern, E. Lee, H. Lai, H. Wang, Y. Lee, Y. Ching (1996)
Circadian rhythm in the Ca(2+)-inhibitable adenylyl activity of the rat striatum.FEBS letters, 385 3
Y. Chern, J. Chiou, H. Lai, M. Tsai (1995)
Regulation of adenylyl cyclase type VI activity during desensitization of the A2a adenosine receptor-mediated cyclic AMP response: role for protein phosphatase 2A.Molecular pharmacology, 48 1
R. Lodi, R. Lodi, A. Schapira, D. Manners, P. Styles, N. Wood, D. Taylor, T. Warner (2000)
Abnormal in vivo skeletal muscle energy metabolism in Huntington's disease and dentatorubropallidoluysian atrophyAnnals of Neurology, 48
Y. Day, Liping Huang, M. Mcduffie, D. Rosin, H. Ye, Jiang-fan Chen, M. Schwarzschild, J. Fink, J. Linden, M. Okusa (2003)
Renal protection from ischemia mediated by A2A adenosine receptors on bone marrow-derived cells.The Journal of clinical investigation, 112 6
C. Corsi, A. Melani, L. Bianchi, F. Pedata (2000)
Striatal A2A adenosine receptor antagonism differentially modifies striatal glutamate outflow in vivo in young and aged ratsNeuroReport, 11
U. Laemmli (1970)
Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 227
M. MacDonald, C. Ambrose, M. Duyao, R. Myers, Carol Lin, L. Srinidhi, G. Barnes, Sherryl Taylor, M. James, Nicolet Groot, Heather Macfarlane, B. Jenkins, M. Anderson, N. Wexler, J. Gusella, G. Bates, S. Baxendale, H. Hummerich, S. Kirby, M. North, S. Youngman, R. Mott, G. Zehetner, Z. Sedlacek, A. Poustka, A. Frischauf, H. Lehrach, A. Buckler, D. Church, L. Doucette-Stamm, M. O’Donovan, Laura Riba-Ramírez, Manish Shah, V. Stanton, S. Strobel, K. Draths, Jennifer Wales, P. Dervan, D. Housman, M. Altherr, R. Shiang, L. Thompson, T. Fielder, J. Wasmuth, D. Tagle, J. Valdes, Lon Elmer, M. Allard, L. Castilla, M. Swaroop, K. Blanchard, F. Collins, R. Snell, T. Holloway, Kathleen Gillespie, N. Datson, D. Shaw, P. Harper (1993)
A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomesCell, 72
L. Mangiarini, K. Sathasivam, M. Seller, Barbara Cozens, Alex Harper, C. Hetherington, Martin Lawton, Y. Trottier, H. Lehrach, S. Davies, G. Bates (1996)
Exon 1 of the HD Gene with an Expanded CAG Repeat Is Sufficient to Cause a Progressive Neurological Phenotype in Transgenic MiceCell, 87
A. Dunah, Hyunkyung Jeong, A. Griffin, Yong-Man Kim, D. Standaert, S. Hersch, M. Mouradian, A. Young, N. Tanese, D. Krainc (2002)
Sp1 and TAFII130 Transcriptional Activity Disrupted in Early Huntington's DiseaseScience, 296
A. Morton, W. Leavens (2000)
Mice transgenic for the human Huntington’s disease mutation have reduced sensitivity to kainic acid toxicityBrain Research Bulletin, 52
Yi-Chao Lee, Chen‐Li Chien, Chung‐Nan Sun, Chuen‐Lin Huang, Nai-Kuei Huang, M. Chiang, H. Lai, Yow-sien Lin, Szu-Yi Chou, C. Wang, M. Tai, W. Liao, Teng-Nan Lin, Fu-Chin Liu, Y. Chern (2003)
Characterization of the rat A2A adenosine receptor gene: a 4.8‐kb promoter‐proximal DNA fragment confers selective expression in the central nervous systemEuropean Journal of Neuroscience, 18
Fu-Chin Liu, Gourong Wu, S. Hsieh, H. Lai, Hsiao-Fang Wang, Tsu-Wei Wang, Y. Chern (1998)
Expression of type VI adenylyl cyclase in the central nervous system: implication for a potential regulator of multiple signals in different neurotransmitter systemsFEBS Letters, 436
M. Arrasate, S. Mitra, E. Schweitzer, M. Segal, S. Finkbeiner (2004)
Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal deathNature, 431
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a CAG trinucleotide expansion in exon 1 of the Huntingtin (Htt) gene. We show herein that in an HD transgenic mouse model (R6/2), daily administration of CGS21680 (CGS), an A2A adenosine receptor (A2A‐R)‐selective agonist, delayed the progressive deterioration of motor performance and prevented a reduction in brain weight. 3D‐µMRI analysis revealed that CGS reversed the enlarged ventricle‐to‐brain ratio of R6/2 mice, with particular improvements in the left and right ventricles. 1H‐MRS showed that CGS significantly reduced the increased choline levels in the striatum. Immunohistochemical analyses further demonstrated that CGS reduced the size of ubiquitin‐positive neuronal intranuclear inclusions (NIIs) in the striatum of R6/2 mice and ameliorated mutant Htt aggregation in a striatal progenitor cell line overexpressing mutant Htt with expanded polyQ. Moreover, chronic CGS treatment normalized the elevated blood glucose levels and reduced the overactivation of a major metabolic sensor [5′AMP‐activated protein kinase (AMPK)] in the striatum of R6/2 mice. Since AMPK is a master switch for energy metabolism, modulation of energy dysfunction caused by the mutant Htt might contribute to the beneficial effects of CGS. Collectively, CGS is a potential drug candidate for the treatment of HD.
Journal of Neurochemistry – Wiley
Published: Apr 1, 2005
Keywords: ; ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.