Access the full text.
Sign up today, get DeepDyve free for 14 days.
G. Eperon, S. Stranks, C. Menelaou, M. Johnston, L. Herz, H. Snaith (2014)
Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cellsEnergy and Environmental Science, 7
V. D'innocenzo, G. Grancini, M. Alcocer, A. Kandada, S. Stranks, Michael Lee, G. Lanzani, H. Snaith, A. Petrozza (2014)
Excitons versus free charges in organo-lead tri-halide perovskitesNature Communications, 5
Ye Zhang, Mingzhen Liu, G. Eperon, T. Leijtens, David McMeekin, Michael Saliba, Wei Zhang, M. Bastiani, A. Petrozza, L. Herz, M. Johnston, Hong Lin, H. Snaith (2015)
Charge selective contacts, mobile ions and anomalous hysteresis in organic-inorganic perovskite solar cellsMaterials horizons, 2
Y. Tokura, N. Nagaosa (2000)
Orbital physics in transition-metal oxidesScience, 288 5465
Mulmudi Kumar, S. Dharani, Wei Leong, P. Boix, R. Prabhakar, T. Baikie, Chen Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S. Mhaisalkar, N. Mathews (2014)
Lead‐Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy ModulationAdvanced Materials, 26
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka (2009)
Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.Journal of the American Chemical Society, 131 17
Zhuo Chen, J. Wang, Yuhang Ren, Chonglong Yu, K. Shum (2012)
Schottky solar cells based on CsSnI3 thin-filmsApplied Physics Letters, 101
J. Pedersen, C. Flindt, A. Jauho, N. Mortensen (2010)
Influence of confining potentials on the exchange coupling in double quantum dotsPhysical Review B, 81
Electronic Supplementary Information (ESI) available: includes full details of experimental methods, supplementary data and details of calculations used
J. Heo, H. Han, Dasom Kim, T. Ahn, S. Im (2015)
Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiencyEnergy and Environmental Science, 8
C. Wehrenfennig, G. Eperon, M. Johnston, H. Snaith, L. Herz (2013)
High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide PerovskitesAdvanced Materials (Deerfield Beach, Fla.), 26
Huimin Zhang, C. Liang, Yong Zhao, Mengjie Sun, Hong Liu, Jing-jing Liang, Dan Li, Fujun Zhang, Zhiqun He (2015)
Dynamic interface charge governing the current-voltage hysteresis in perovskite solar cells.Physical chemistry chemical physics : PCCP, 17 15
Jeffrey Christians, J. Manser, P. Kamat (2015)
Best Practices in Perovskite Solar Cell Efficiency Measurements. Avoiding the Error of Making Bad Cells Look Good.The journal of physical chemistry letters, 6 5
W. Nguyen, Colin Bailie, E. Unger, M. McGehee (2014)
Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro(TFSI)₂ in perovskite and dye-sensitized solar cells.Journal of the American Chemical Society, 136 31
O. Yunakova, V. Miloslavskii, E. Kovalenko (2012)
Exciton absorption spectrum of thin CsPbI3 and Cs4PbI6 filmsOptics and Spectroscopy, 112
T. Leijtens, S. Stranks, G. Eperon, R. Lindblad, E. Johansson, I. McPherson, H. Rensmo, J. Ball, Michael Lee, H. Snaith (2014)
Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility.ACS nano, 8 7
Nakita Noel, S. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. Haghighirad, A. Sadhanala, G. Eperon, Sandeep Pathak, M. Johnston, A. Petrozza, L. Herz, H. Snaith (2014)
Lead-free organic–inorganic tin halide perovskites for photovoltaic applicationsEnergy and Environmental Science, 7
H. Snaith, A. Abate, J. Ball, G. Eperon, T. Leijtens, Nakita Noel, S. Stranks, Jacob Wang, K. Wojciechowski, Wei Zhang (2014)
Anomalous Hysteresis in Perovskite Solar Cells.The journal of physical chemistry letters, 5 9
C. Stoumpos, C. Malliakas, M. Kanatzidis (2013)
Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties.Inorganic chemistry, 52 15
Hyosung Choi, Jaeki Jeong, Hak‐Beom Kim, Seongbeom Kim, Bright Walker, Gi-Hwan Kim, Jin Kim (2014)
Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cellsNano Energy, 7
C. Møller (1958)
Crystal Structure and Photoconductivity of Cæsium PlumbohalidesNature, 182
W. Tress, N. Marinova, T. Moehl, S. Zakeeruddin, M. Nazeeruddin, M. Grätzel (2015)
Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric fieldEnergy and Environmental Science, 8
Zhengguo Xiao, Yong-bo Yuan, Yuchuan Shao, Qi Wang, Qingfeng Dong, Cheng Bi, Pankaj Sharma, A. Gruverman, Jinsong Huang (2015)
Giant switchable photovoltaic effect in organometal trihalide perovskite devices.Nature materials, 14 2
S. Stranks, G. Eperon, G. Grancini, C. Menelaou, M. Alcocer, T. Leijtens, L. Herz, A. Petrozza, H. Snaith (2013)
Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite AbsorberScience, 342
J. Beilsten-Edmands, G. Eperon, Roger Johnson, H. Snaith, P. Radaelli (2015)
Non-ferroelectric nature of the conductance hysteresis in CH3NH3PbI3 perovskite-based photovoltaic devicesApplied Physics Letters, 106
Michael Kulbak, D. Cahen, G. Hodes (2015)
How Important Is the Organic Part of Lead Halide Perovskite Photovoltaic Cells? Efficient CsPbBr3 Cells.The journal of physical chemistry letters, 6 13
Woon Yang, J. Noh, N. Jeon, Young Kim, Seungchan Ryu, Jangwon Seo, S. Seok (2015)
High-performance photovoltaic perovskite layers fabricated through intramolecular exchangeScience, 348
Shi Liu, F. Zheng, Nathan Koocher, H. Takenaka, Fenggong Wang, A. Rappe (2015)
Ferroelectric Domain Wall Induced Band Gap Reduction and Charge Separation in Organometal Halide Perovskites.The journal of physical chemistry letters, 6 4
K. Wojciechowski, S. Stranks, A. Abate, Golnaz Sadoughi, A. Sadhanala, N. Kopidakis, G. Rumbles, Chang‐Zhi Li, R. Friend, A. Jen, H. Snaith (2014)
Heterojunction modification for highly efficient organic-inorganic perovskite solar cells.ACS nano, 8 12
Huanping Zhou, Qi Chen, Gang Li, Song Luo, T. Song, Hsin‐Sheng Duan, Z. Hong, Jingbi You, Yongsheng Liu, Yang Yang (2014)
Interface engineering of highly efficient perovskite solar cellsScience, 345
(1959)
Fys. Medd. Dan
L. Protesescu, S. Yakunin, M. Bodnarchuk, Franziska Krieg, Riccarda Caputo, Christopher Hendon, R. Yang, A. Walsh, M. Kovalenko (2015)
Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color GamutNano Letters, 15
N. Jeon, J. Noh, Woon Yang, Young Kim, Seungchan Ryu, Jangwon Seo, S. Seok (2015)
Compositional engineering of perovskite materials for high-performance solar cellsNature, 517
Michael Lee, J. Teuscher, T. Miyasaka, T. Murakami, H. Snaith (2012)
Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide PerovskitesScience, 338
Yasemin Kutes, Linghan Ye, Yuanyuan Zhou, S. Pang, B. Huey, N. Padture (2014)
Direct Observation of Ferroelectric Domains in Solution-Processed CH3NH3PbI3 Perovskite Thin Films.The journal of physical chemistry letters, 5 19
Yong Zhao, C. Liang, Huimin Zhang, Dan Li, Ding Tian, Guobao Li, X. Jing, Wenguan Zhang, Weikang Xiao, Qian Liu, Fujun Zhang, Zhiqun He (2015)
Anomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic–inorganic halide perovskitesEnergy and Environmental Science, 8
J. Burschka, N. Pellet, S. Moon, R. Humphry‐Baker, P. Gao, M. Nazeeruddin, M. Grätzel (2013)
Sequential deposition as a route to high-performance perovskite-sensitized solar cellsNature, 499
F. Tsui, M. Smoak, T. Nath, C. Eom (2000)
Strain-dependent magnetic phase diagram of epitaxial La0.67Sr0.33MnO3 thin filmsApplied Physics Letters, 76
E. Unger, E. Hoke, Colin Bailie, W. Nguyen, A. Bowring, Thomas Heumüller, M. Christoforo, M. McGehee (2014)
Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cellsEnergy and Environmental Science, 7
A. Hatt, N. Spaldin, C. Ederer (2009)
Strain-induced isosymmetric phase transition in BiFeO 3Physical Review B, 81
B. Conings, Jeroen Drijkoningen, N. Gauquelin, Aslihan Babayigit, J. D’Haen, Lien D'Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. Angelis, H. Boyen (2015)
Intrinsic Thermal Instability of Methylammonium Lead Trihalide PerovskiteAdvanced Energy Materials, 5
Rafael Sánchez, Victoria González‐Pedro, Jin‐Wook Lee, N. Park, Y. Kang, I. Mora‐Seró, J. Bisquert (2014)
Slow Dynamic Processes in Lead Halide Perovskite Solar Cells. Characteristic Times and Hysteresis.The journal of physical chemistry letters, 5 13
J. Frost, K. Butler, A. Walsh (2014)
Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cellsAPL Materials, 2
(1959)
Mat . Fys . Medd
Hsin-Wei Chen, Nobuya Sakai, M. Ikegami, T. Miyasaka (2015)
Emergence of Hysteresis and Transient Ferroelectric Response in Organo-Lead Halide Perovskite Solar Cells.The journal of physical chemistry letters, 6 1
The vast majority of perovskite solar cell research has focused on organic–inorganic lead trihalide perovskites. Herein, we present working inorganic CsPbI3 perovskite solar cells for the first time. CsPbI3 normally resides in a yellow non-perovskite phase at room temperature, but by careful processing control and development of a low-temperature phase transition route we have stabilised the material in the black perovskite phase at room temperature. As such, we have fabricated solar cell devices in a variety of architectures, with current–voltage curve measured efficiency up to 2.9% for a planar heterojunction architecture, and stabilised power conversion efficiency of 1.7%. The well-functioning planar junction devices demonstrate long-range electron and hole transport in this material. Importantly, this work identifies that the organic cation is not essential, but simply a convenience for forming lead triiodide perovskites with good photovoltaic properties. We additionally observe significant rate-dependent current–voltage hysteresis in CsPbI3 devices, despite the absence of the organic polar molecule previously thought to be a candidate for inducing hysteresis via ferroelectric polarisation. Due to its space group, CsPbI3 cannot be a ferroelectric material, and thus we can conclude that ferroelectricity is not required to explain current–voltage hysteresis in perovskite solar cells. Our report of working inorganic perovskite solar cells paves the way for further developments likely to lead to much more thermally stable perovskite solar cells and other optoelectronic devices.
Journal of Materials Chemistry A – Royal Society of Chemistry
Published: Sep 29, 2015
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.