Access the full text.
Sign up today, get DeepDyve free for 14 days.
J. Cedarbaum (2004)
SurvivalAmyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 5
Therese Rosenling, M. Stoop, Agnieszka Smolinska, B. Muilwijk, L. Coulier, Shanna Shi, A. Dane, Christin Christin, F. Suits, P. Horvatovich, S. Wijmenga, L. Buydens, R. Vreeken, T. Hankemeier, A. Gool, T. Luider, R. Bischoff (2011)
The impact of delayed storage on the measured proteome and metabolome of human cerebrospinal fluid.Clinical chemistry, 57 12
M. Heiden, L. Cantley, C. Thompson (2009)
Understanding the Warburg Effect: The Metabolic Requirements of Cell ProliferationScience, 324
N. Kitteringham, R. Jenkins, C. Lane, V. Elliott, B. Park (2009)
Multiple reaction monitoring for quantitative biomarker analysis in proteomics and metabolomics.Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 877 13
M Rodamer, PW Elsinghorst, M Kinzig, M Gutschow, F Sorgel (2011)
Development and validation of a liquid chromatography/tandem mass spectrometry procedure for the quantification of sunitinib (SU11248) and its active metabolite, N-desethyl sunitinib (SU12662), in human plasma: application to an explorative studyJ. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 879
Tiedong Guo, J. Gu, O. Soldin, Ravinder Singh, S. Soldin (2008)
Rapid measurement of estrogens and their metabolites in human serum by liquid chromatography-tandem mass spectrometry without derivatization.Clinical biochemistry, 41 9
Hisanori Hara, Takashi Uchimura, N. Akashi, T. Naganuma, T. Aizawa, Y. Nagae, N. Masuda (2004)
Simultaneous analytical method for the determination of TCH346 and its four metabolites in human plasma by liquid chromatography/tandem mass spectrometry.Rapid communications in mass spectrometry : RCM, 18 4
Andrew Kelly, S. Breitkopf, Min Yuan, J. Goldsmith, D. Spentzos, J. Asara (2011)
Metabolomic Profiling from Formalin-Fixed, Paraffin-Embedded Tumor Tissue Using Targeted LC/MS/MS: Application in SarcomaPLoS ONE, 6
J. Xia, D. Wishart (2011)
Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalystNature Protocols, 6
S. Bajad, Wenyun Lu, Elizabeth Kimball, Jie Yuan, C. Peterson, J. Rabinowitz (2006)
Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry.Journal of chromatography. A, 1125 1
Yu Zhang, Yiping Ren, J. Jiao, Dong Li, Ying Zhang (2011)
Ultra high-performance liquid chromatography-tandem mass spectrometry for the simultaneous analysis of asparagine, sugars, and acrylamide in Maillard reactions.Analytical chemistry, 83 9
Wenyun Lu, Bryson Bennett, J. Rabinowitz (2008)
Analytical strategies for LC-MS-based targeted metabolomics.Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 871 2
Jonathan Coloff, J. Rathmell (2006)
Metabolic regulation of Akt: roles reversedThe Journal of Cell Biology, 175
Daming Gao, H. Inuzuka, Meng-Kwang Marcus Tan, H. Fukushima, J. Locasale, Pengda Liu, L. Wan, B. Zhai, Y. Chin, S. Shaik, C. Lyssiotis, S. Gygi, A. Toker, L. Cantley, J. Asara, J. Harper, Wenyi Wei (2011)
mTOR drives its own activation via SCF(βTrCP)-dependent degradation of the mTOR inhibitor DEPTOR.Molecular cell, 44 2
J. Xia, N. Psychogios, N. Young, D. Wishart (2009)
MetaboAnalyst: a web server for metabolomic data analysis and interpretationNucleic Acids Research, 37
J. Koyama, Shiori Taga, Kae Shimizu, Maki Shimizu, I. Morita, A. Takeuchi (2011)
Simultaneous determination of histamine and prostaglandin D2 using an LC-ESI-MS/MS method with positive/negative ion-switching ionization modes: application to the study of anti-allergic flavonoids on the degranulation of KU812 cellsAnalytical and Bioanalytical Chemistry, 401
R. Elstrom, D. Bauer, M. Buzzai, Robyn Karnauskas, M. Harris, D. Plas, H. Zhuang, Ryan Cinalli, A. Alavi, C. Rudin, C. Thompson (2004)
Akt Stimulates Aerobic Glycolysis in Cancer CellsCancer Research, 64
M. Heiden, J. Locasale, K. Swanson, H. Sharfi, G. Heffron, D. Amador-Noguez, H. Christofk, G. Wagner, J. Rabinowitz, J. Asara, L. Cantley (2010)
Evidence for an Alternative Glycolytic Pathway in Rapidly Proliferating CellsScience, 329
C. Yi, Heling Pan, J. Seebacher, I. Jang, S. Hyberts, G. Heffron, M. Heiden, Renliang Yang, Fupeng Li, J. Locasale, H. Sharfi, B. Zhai, R. Rodríguez-Mias, H. Luithardt, L. Cantley, G. Daley, J. Asara, S. Gygi, G. Wagner, Chuan-fa Liu, Junying Yuan (2011)
Metabolic Regulation of Protein N-Alpha-Acetylation by Bcl-xL Promotes Cell SurvivalCell, 146
J. Locasale, T. Melman, Susan Song, Xuemei Yang, K. Swanson, L. Cantley, E. Wong, J. Asara (2012)
Metabolomics of Human Cerebrospinal Fluid Identifies Signatures of Malignant Glioma*Molecular & Cellular Proteomics, 11
Z. Meng, T. Veenstra (2011)
Targeted mass spectrometry approaches for protein biomarker verification.Journal of proteomics, 74 12
W. Wikoff, Gurudutt Pendyala, G. Siuzdak, H. Fox (2008)
Metabolomic analysis of the cerebrospinal fluid reveals changes in phospholipase expression in the CNS of SIV-infected macaques.The Journal of clinical investigation, 118 7
M. Mamas, W. Dunn, L. Neyses, R. Goodacre (2010)
The role of metabolites and metabolomics in clinically applicable biomarkers of diseaseArchives of Toxicology, 85
JW Locasale (2011)
Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesisNat. Genet., 43
Wenyun Lu, Michelle Clasquin, E. Melamud, D. Amador-Noguez, A. Caudy, J. Rabinowitz (2010)
Metabolomic analysis via reversed-phase ion-pairing liquid chromatography coupled to a stand alone orbitrap mass spectrometer.Analytical chemistry, 82 8
D. Anastasiou, G. Poulogiannis, J. Asara, M. Boxer, Jian-Kang Jiang, M. Shen, G. Bellinger, A. Sasaki, J. Locasale, D. Auld, Craig Thomas, M. Heiden, L. Cantley (2011)
Inhibition of Pyruvate Kinase M2 by Reactive Oxygen Species Contributes to Cellular Antioxidant ResponsesScience, 334
D. Wishart (2011)
Advances in metabolite identification.Bioanalysis, 3 15
J. Locasale, A. Grassian, R. Beroukhim, M. Meyerson, G. Wagner, J. Asara, J. Brugge, M. Heiden, L. Cantley (2012)
Amplification of phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesisBMC Proceedings, 6
D. Plas, S. Talapatra, A. Edinger, J. Rathmell, C. Thompson (2001)
Akt and Bcl-xL Promote Growth Factor-independent Survival through Distinct Effects on Mitochondrial Physiology*The Journal of Biological Chemistry, 276
W. Dunn, D. Broadhurst, H. Atherton, R. Goodacre, J. Griffin (2011)
Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy.Chemical Society reviews, 40 1
Estelle Martineau, I. Tea, G. Loaëc, P. Giraudeau, S. Akoka (2011)
Strategy for choosing extraction procedures for NMR-based metabolomic analysis of mammalian cellsAnalytical and Bioanalytical Chemistry, 401
Xuemei Yang, J. Locasale, R. Rahal, S. Breitkopf, M. VanderHeiden, D. Spentzos, Chin-Lee Wu, N. Perrimon, L. Cantley, E. Wong, J. Asara (2011)
Abstract LB-255: A mass spectrometry platform to quantitatively profile cancer cell metabolism from cells, tumors, and fixed tissueCancer Research, 71
R. Gerszten, S. Carr, M. Sabatine (2010)
Integration of proteomic-based tools for improved biomarkers of myocardial injury.Clinical chemistry, 56 2
Ru Wei (2011)
Metabolomics and its practical value in pharmaceutical industry.Current drug metabolism, 12 4
R. Vos, S. Moco, A. Lommen, J. Keurentjes, R. Bino, R. Hall (2007)
Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometryNature Protocols, 2
(2011)
Tumor cell metabolism: an integral view
J. Bayley, P. Devilee (2010)
Warburg tumours and the mechanisms of mitochondrial tumour suppressor genes. Barking up the right tree?Current opinion in genetics & development, 20 3
The revival of interest in cancer cell metabolism in recent years has prompted the need for quantitative analytical platforms for studying metabolites from in vivo sources. We implemented a quantitative polar metabolomics profiling platform using selected reaction monitoring with a 5500 QTRAP hybrid triple quadrupole mass spectrometer that covers all major metabolic pathways. The platform uses hydrophilic interaction liquid chromatography with positive/negative ion switching to analyze 258 metabolites (289 Q1/Q3 transitions) from a single 15-min liquid chromatography–mass spectrometry acquisition with a 3-ms dwell time and a 1.55-s duty cycle time. Previous platforms use more than one experiment to profile this number of metabolites from different ionization modes. The platform is compatible with polar metabolites from any biological source, including fresh tissues, cancer cells, bodily fluids and formalin-fixed paraffin-embedded tumor tissue. Relative quantification can be achieved without using internal standards, and integrated peak areas based on total ion current can be used for statistical analyses and pathway analyses across biological sample conditions. The procedure takes ∼12 h from metabolite extraction to peak integration for a data set containing 15 total samples (∼6 h for a single sample).
Nature Protocols – Springer Journals
Published: Apr 12, 2012
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.