Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Response of Fructan to Water Deficit in Growing Leaves of Tall Fescue

Response of Fructan to Water Deficit in Growing Leaves of Tall Fescue Abstract Changes in dry matter and water-soluble carbohydrate components, especially fructan, were examined in the basal 25 mm of expanding leaf blades of tall fescue (Festuca arundinacea Schreb.) to assess their roles in plant response to water deficit. Water was withheld from vegetative plants grown in soil in controlled-environment chambers. As stress progressed, leaf elongation rate decreased sooner in the light period than it did in the dark period. The decrease in growth rate in the dark period was associated with a decrease in local relative elongation rates and a shortening of the elongation zone from about 25 mm (control) to 15 mm. Dry matter content of the leaf base increased 23% during stress, due mainly to increased water-soluble carbohydrate near the ligule and to increased water-soluble, carbohydrate-free dry matter at distal positions. Sucrose content increased 258% in the leaf base, but especially (over 4-fold) within 10 mm of the ligule. Hexose content increased 187% in the leaf base. Content of total fructan decreased to 69% of control, mostly in regions farther from the ligule. Fructan hydrolysis could account for the hexose accumulated. Stress caused the osmotic potential to decrease throughout the leaf base, but more toward the ligule. With stress there was 70% less direct contribution of low-degree-of-polymerization fructan to osmotic potential in the leaf base, but that for sucrose and hexose increased 96 and 67%, respectively. Thus, fructan metabolism is involved but fructan itself contributes only indirectly to osmotic adjustment. This content is only available as a PDF. Copyright © 1994 by American Society of Plant Biologists This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Physiology Oxford University Press

Response of Fructan to Water Deficit in Growing Leaves of Tall Fescue

Plant Physiology , Volume 106 (1) – Sep 1, 1994

Loading next page...
 
/lp/oxford-university-press/response-of-fructan-to-water-deficit-in-growing-leaves-of-tall-fescue-XlI1gVsUDB

References (22)

Publisher
Oxford University Press
Copyright
Copyright © 2021 American Society of Plant Biologists
ISSN
0032-0889
eISSN
1532-2548
DOI
10.1104/pp.106.1.329
Publisher site
See Article on Publisher Site

Abstract

Abstract Changes in dry matter and water-soluble carbohydrate components, especially fructan, were examined in the basal 25 mm of expanding leaf blades of tall fescue (Festuca arundinacea Schreb.) to assess their roles in plant response to water deficit. Water was withheld from vegetative plants grown in soil in controlled-environment chambers. As stress progressed, leaf elongation rate decreased sooner in the light period than it did in the dark period. The decrease in growth rate in the dark period was associated with a decrease in local relative elongation rates and a shortening of the elongation zone from about 25 mm (control) to 15 mm. Dry matter content of the leaf base increased 23% during stress, due mainly to increased water-soluble carbohydrate near the ligule and to increased water-soluble, carbohydrate-free dry matter at distal positions. Sucrose content increased 258% in the leaf base, but especially (over 4-fold) within 10 mm of the ligule. Hexose content increased 187% in the leaf base. Content of total fructan decreased to 69% of control, mostly in regions farther from the ligule. Fructan hydrolysis could account for the hexose accumulated. Stress caused the osmotic potential to decrease throughout the leaf base, but more toward the ligule. With stress there was 70% less direct contribution of low-degree-of-polymerization fructan to osmotic potential in the leaf base, but that for sucrose and hexose increased 96 and 67%, respectively. Thus, fructan metabolism is involved but fructan itself contributes only indirectly to osmotic adjustment. This content is only available as a PDF. Copyright © 1994 by American Society of Plant Biologists This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)

Journal

Plant PhysiologyOxford University Press

Published: Sep 1, 1994

There are no references for this article.